Material Removal Rate Control in Open-Air Type Plasma Chemical Vaporization Machining Using Optical Actinometry

Article Preview

Abstract:

Open-air type numerically controlled plasma chemical vaporization machining (NC-PCVM) is promising technique to fabricate the ultra-precision optical components and to finish the functional materials. The objective shape is fabricated by controlling the scanning speed of the localized plasma because removal volume is proportional to the dwelling time of the plasma on the workpiece surface. To achieve deterministic figuring with shape accuracy of nanometer level, it is essential to keep volumetric material removal rate (MRR) constant during and batch to batch processing. The removal rate is proportional to the density of fluorine radical generated by plasma. So, we control the electric power to keep the removal rate constant during the process based on the fluorine atomic density obtained by optical emission actinometry. We report the relationship between MRR and fluorine atomic density measured by optical emission actinometry.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 523-524)

Pages:

267-271

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, Plasma cvm(chemical vaporization machining) : an ultra precision machining technique using high-pressure reactive plasma, Nanotechnology 4 (1993) 225-229.

DOI: 10.1088/0957-4484/4/4/008

Google Scholar

[2] H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, Y. Mori, Computer numerically controlled plasma chemical vaporization machining using a pipe electrode for optical fabrication, Appl. Opt. 37 (1998) 5198-5210.

DOI: 10.1364/ao.37.005198

Google Scholar

[3] K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, Laser beam intensity profile transformation with a fabricated mirror, Appl. Opt. 36 (1997) 551-557.

DOI: 10.1364/ao.36.000551

Google Scholar

[4] K. Yamamura, K. Yamauchi, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori: Fabrication of elliptical mirror at nanometer-level accuracy for hard x-ray focusing by numerically controlled plasma chemical vaporization machining, Rev. Sci. Instrum. 74 (2003) 4549-4553.

DOI: 10.1063/1.1606531

Google Scholar

[5] Y. Mori, K. Yamamura, Y. Sano, Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining, Rev. Sci. Instrum. 75 (2004) 942-946.

DOI: 10.1063/1.1687041

Google Scholar

[6] K. Yamamura, S. Shimada, Y. Mori, Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining, Annals of the CIRP 57 (2008) 567-570.

DOI: 10.1016/j.cirp.2008.03.132

Google Scholar

[7] M. Hosoda, K. Ueda, M. Nagano, N. Zettsu, S. Shimada, K. Taniguchi, K. Yamamura, Fabrication of damage-free curved silicon crystal substrate for a focusing X-ray spectrometer by plasma chemical vaporization machining, Key Engineering Materials 447-448 (2010) 213-217.

DOI: 10.4028/www.scientific.net/kem.447-448.213

Google Scholar

[8] T. Kimura, K. Hanaki, Comparison of plasma parameters measured in inductively coupled Ar/C4F8/O2 and Ar/CF4/O2 plasmas, Jpn. J. Appl. Phys. 48 (2009) 096004_1-6.

DOI: 10.1143/jjap.48.096004

Google Scholar

[9] J. W. Coburn, M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, J. Appl. Phys. 51 (1980) 3134-3136.

DOI: 10.1063/1.328060

Google Scholar