Material Removal Rate Control in Open-Air Type Plasma Chemical Vaporization Machining Using Optical Actinometry

Abstract:

Article Preview

Open-air type numerically controlled plasma chemical vaporization machining (NC-PCVM) is promising technique to fabricate the ultra-precision optical components and to finish the functional materials. The objective shape is fabricated by controlling the scanning speed of the localized plasma because removal volume is proportional to the dwelling time of the plasma on the workpiece surface. To achieve deterministic figuring with shape accuracy of nanometer level, it is essential to keep volumetric material removal rate (MRR) constant during and batch to batch processing. The removal rate is proportional to the density of fluorine radical generated by plasma. So, we control the electric power to keep the removal rate constant during the process based on the fluorine atomic density obtained by optical emission actinometry. We report the relationship between MRR and fluorine atomic density measured by optical emission actinometry.

Info:

Periodical:

Key Engineering Materials (Volumes 523-524)

Edited by:

Tojiro Aoyama, Hideki Aoyama, Atsushi Matsubara, Hayato Yoshioka and Libo Zhou

Pages:

267-271

Citation:

Y. Yamamoto et al., "Material Removal Rate Control in Open-Air Type Plasma Chemical Vaporization Machining Using Optical Actinometry", Key Engineering Materials, Vols. 523-524, pp. 267-271, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, Plasma cvm(chemical vaporization machining) : an ultra precision machining technique using high-pressure reactive plasma, Nanotechnology 4 (1993) 225-229.

DOI: https://doi.org/10.1088/0957-4484/4/4/008

[2] H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, Y. Mori, Computer numerically controlled plasma chemical vaporization machining using a pipe electrode for optical fabrication, Appl. Opt. 37 (1998) 5198-5210.

DOI: https://doi.org/10.1364/ao.37.005198

[3] K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, Laser beam intensity profile transformation with a fabricated mirror, Appl. Opt. 36 (1997) 551-557.

DOI: https://doi.org/10.1364/ao.36.000551

[4] K. Yamamura, K. Yamauchi, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori: Fabrication of elliptical mirror at nanometer-level accuracy for hard x-ray focusing by numerically controlled plasma chemical vaporization machining, Rev. Sci. Instrum. 74 (2003).

DOI: https://doi.org/10.1063/1.1606531

[5] Y. Mori, K. Yamamura, Y. Sano, Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining, Rev. Sci. Instrum. 75 (2004) 942-946.

DOI: https://doi.org/10.1063/1.1687041

[6] K. Yamamura, S. Shimada, Y. Mori, Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining, Annals of the CIRP 57 (2008) 567-570.

DOI: https://doi.org/10.1016/j.cirp.2008.03.132

[7] M. Hosoda, K. Ueda, M. Nagano, N. Zettsu, S. Shimada, K. Taniguchi, K. Yamamura, Fabrication of damage-free curved silicon crystal substrate for a focusing X-ray spectrometer by plasma chemical vaporization machining, Key Engineering Materials 447-448 (2010).

DOI: https://doi.org/10.4028/www.scientific.net/kem.447-448.213

[8] T. Kimura, K. Hanaki, Comparison of plasma parameters measured in inductively coupled Ar/C4F8/O2 and Ar/CF4/O2 plasmas, Jpn. J. Appl. Phys. 48 (2009) 096004_1-6.

DOI: https://doi.org/10.1143/jjap.48.096004

[9] J. W. Coburn, M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, J. Appl. Phys. 51 (1980) 3134-3136.

DOI: https://doi.org/10.1063/1.328060