A New Approach to Determine Dynamic Strength Model Parameters under Taylor Impact Test

Article Preview

Abstract:

In this paper, to determine the dynamic strength model for steels, a new approach which does not rely on the Hopkinson bar test has been proposed. As the DH36 steel for example, using the results of Taylor impact test and the quasi-static compression test, the initial parameters of Johnson-Cook plastic strength model have been fitted out, then the initial strength parameters have been optimized using the optimization techniques of the sparse Taylor impact cylinder. It has been shown that the optimized results in numerical simulation are consistent with results of Taylor impact test, and the optimized Johnson-Cook model can also well describe flow stress curve fitted from the Hopkinson bar test.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 525-526)

Pages:

377-380

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nemat-Nasser W.G. Guo: Mech Mater. Vol 37(2005), p.379.

Google Scholar

[2] G.I. Taylor: Proc. Roy. Soc. London A. Vol 194(1948), p.289.

Google Scholar

[3] J.B. Hawyard, D. Easton and W. Johnson: Int.J. Mech. Sci. Vol 10(1968), p.929.

Google Scholar

[4] S.E. Jones, P.P. Gillis and J.C. Foster:J. Appl. Phys. Vol 61(1987), p.499.

Google Scholar

[5] D. Eakins, N.N. Thadhani: Int.J. impact. Engng. Vol 34(2007), p.1821.

Google Scholar

[6] I. Rohr, H. Nahme and K. Thoma:J. Phys. IV France. Vol 110(2003), p.513.

Google Scholar

[7] J. Nussbaum, N. Faerl: Procedia. Engng. Vol 10(2011), p.3453.

Google Scholar

[8] M. Martin, T. Shen, N N. Thadhani: Mater. Sci. Engng. Vol 494(2008), p, 416.

Google Scholar

[9] W.G. Guo, F.F. Shi and F.L. Liu: Acta. J. OrdnanceⅡin Chinese. Vol 30(2009), p.203.

Google Scholar

[10] S. Nemat-Nasser W.G. Guo: Mech Mater. Vol 35(2003), p.1024.

Google Scholar

[11] P.J. Maudlin, G.T. Gray and C.M. Cady: Math. Phy&Engng Sci. Vol 357(2011), p.1707.

Google Scholar