Extended Finite Element Method for Fracture Mechanics and Mesh Refinement Controlled by Density Function

Article Preview

Abstract:

This paper discusses the combination of element enrichment by mesh refinement controlled by density function with the extended finite element method and its application in fracture mechanics. Extended finite element method (XFEM) is an effective numerical method for solving discontinuity problems in the finite element work frame. A numerical example of fracture mechanics is analyzed at the end of this paper to show the application of the above method.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 525-526)

Pages:

413-416

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Moës, J. Dolbow and T. Belytschko: A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Engng., Vol. 46 (1999), pp.131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[2] Soheil Mohammadi: Extended Finite Element Method for Fracture Analysis of Structures (Blackwell, 2008).

Google Scholar

[3] R. M. Dreizler, E. K. U. Gross: Density Functional Theory (Springer, Berlin 1990).

Google Scholar

[4] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods (Springer, New York 2002).

Google Scholar

[5] G. Dhatt, G. Touzot: The Finite Element Method Displayed, (J. Wiley & Sons, New York 1984).

Google Scholar

[6] T. Beck: Real-space Mesh Techniques in Density-Functional Theory, Rev. Mod. Phys. 72 (4) (2000) p.1041–1080.

DOI: 10.1103/revmodphys.72.1041

Google Scholar

[7] J, Hugger: The Theory of Density Representation of Finite Element Meshes. Examples of Density Operators with Quadrilateral Elements in the Mapped Domain, Computer Methods in Applied Mechanics and Engineering [JIF=1. 252] 109 (1993), pp.17-39.

DOI: 10.1016/0045-7825(93)90223-k

Google Scholar