Reactive Sintering of ZrC-TiC Composites

Article Preview

Abstract:

Inherently, zirconium carbide (ZrC) suffers from low fracture toughness (~3 MPa*m1/2) and excessive porosity when sintered in vacuum. One way to improve ZrC’s sinterability and fracture toughness is the addition of binder metal or other carbides to increase densification. Using mechanical activated synthesis (MAS) to homogenously mix ZrC and titanium carbide (TiC) powders, followed by sintering at 1900 °C, produces a ZrC-TiC composite with hardness and fracture toughness at 20 GPa & ~7 MPa*m1/2, respectively. 80ZrC-20TiC (wt%) gave the highest fracture toughness value compared to other ratios. Varying TiC ratio from 20 - 50 wt% does little to affect mechanical hardness or densification of the composite. However, fracture toughness appears to increase marginally with decreasing TiC concentration down to ~20 wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz; Processing of ZrC–Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC–Mo System; J. Am. Ceram. Soc., 90 (2007) 1998–2002.

DOI: 10.1111/j.1551-2916.2007.01667.x

Google Scholar

[2] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz; Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties; J. Am. Ceram. Soc., 91 (2008) 873–878.

DOI: 10.1111/j.1551-2916.2007.02231.x

Google Scholar

[3] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, H. Wang; Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets; Mater. Chem., Phys. 115 (2009) 690–695.

DOI: 10.1016/j.matchemphys.2009.02.012

Google Scholar

[4] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, H. Wang; Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing; Mater. Sci., Eng., 497 (2008) 79–86.

DOI: 10.1016/j.msea.2008.07.017

Google Scholar

[5] Yung, D., Kollo, L., Hussainova, I., Zikin, A.; Mechanically activated synthesised Zirconium Carbide substrate to make ZrC-Mo cermets; EURO PM2011, 28, (2011) #149.

Google Scholar

[6] Yung, D-L.; Kollo, L.; Hussainova, I.; Zikin, A. (2012) Reactive sintering of zirconium carbide based systems. In: Proceedings of the 8th International Conference of DAAAM BALTIC INDUSTRIAL ENGINEERING, Tallinn, Estonia, (2012) 783-788

Google Scholar

[7] Strecker, K., Ribeiroa, S., Hoffmann, M.J.; Fracture Toughness Measurements of LPS-SiC: A Comparison of the Indentation Technique and the SEVNB Method; Mater. Res., 8 (2005)121-124.

DOI: 10.1590/s1516-14392005000200004

Google Scholar

[8] A. Markström, D. Andersson, K. Frisk; Combined ab-initio and experimental assessment of A1-xBxC mixed carbides. Computer Coupling of Phase Diagrams and Thermochemistry 32 (2008) 615-623

DOI: 10.1016/j.calphad.2008.07.014

Google Scholar

[9] G. Song, Y. Wang, Y. Zhou; The mechanical and thermophysical properties of ZrC/W composites at elevated temperature; Materials Science and Engineering A334 (2002) 223–232

DOI: 10.1016/s0921-5093(01)01802-0

Google Scholar

[10] D.Mclean, Grain Boundaries in Metals, Clarendon Press, Oxford, 1957.

Google Scholar