[1]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz; Processing of ZrC–Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC–Mo System; J. Am. Ceram. Soc., 90 (2007) 1998–2002.
DOI: 10.1111/j.1551-2916.2007.01667.x
Google Scholar
[2]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz; Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties; J. Am. Ceram. Soc., 91 (2008) 873–878.
DOI: 10.1111/j.1551-2916.2007.02231.x
Google Scholar
[3]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, H. Wang; Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets; Mater. Chem., Phys. 115 (2009) 690–695.
DOI: 10.1016/j.matchemphys.2009.02.012
Google Scholar
[4]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, H. Wang; Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing; Mater. Sci., Eng., 497 (2008) 79–86.
DOI: 10.1016/j.msea.2008.07.017
Google Scholar
[5]
Yung, D., Kollo, L., Hussainova, I., Zikin, A.; Mechanically activated synthesised Zirconium Carbide substrate to make ZrC-Mo cermets; EURO PM2011, 28, (2011) #149.
Google Scholar
[6]
Yung, D-L.; Kollo, L.; Hussainova, I.; Zikin, A. (2012) Reactive sintering of zirconium carbide based systems. In: Proceedings of the 8th International Conference of DAAAM BALTIC INDUSTRIAL ENGINEERING, Tallinn, Estonia, (2012) 783-788
Google Scholar
[7]
Strecker, K., Ribeiroa, S., Hoffmann, M.J.; Fracture Toughness Measurements of LPS-SiC: A Comparison of the Indentation Technique and the SEVNB Method; Mater. Res., 8 (2005)121-124.
DOI: 10.1590/s1516-14392005000200004
Google Scholar
[8]
A. Markström, D. Andersson, K. Frisk; Combined ab-initio and experimental assessment of A1-xBxC mixed carbides. Computer Coupling of Phase Diagrams and Thermochemistry 32 (2008) 615-623
DOI: 10.1016/j.calphad.2008.07.014
Google Scholar
[9]
G. Song, Y. Wang, Y. Zhou; The mechanical and thermophysical properties of ZrC/W composites at elevated temperature; Materials Science and Engineering A334 (2002) 223–232
DOI: 10.1016/s0921-5093(01)01802-0
Google Scholar
[10]
D.Mclean, Grain Boundaries in Metals, Clarendon Press, Oxford, 1957.
Google Scholar