Behavior of Human Blood Adsorption to Biomimetic Functionally Graded Hydroxyapatite

Article Preview

Abstract:

Our approach to the design of biological material scaffolds for bone regeneration is the creation of cell environments that mimic natural tissues. Recently, we confirmed hitologically that the material surfaces of conventional, nonabsorbable ceramics shed body fluid. For bone engineering, it is known that ideal scaffolds should be bioabsorbable, mimetic, and hydrophilic materials that allow for the permeation of liquid components, such as blood and/or extracellular fluid. In our previous study showed functionally graded hydroxyapatite (fg-HAp) absorbed body fluid including albumin. In this study, we investigated the behavior of human blood adsorption to the fg-HAp by using the scanning electron microscope (SEM). The adsorption of the platelets and the formation of the fibrinous network were observed in the fg-HAp group incubated 20 minutes.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

44-49

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.E. Achneck, B. Sileshi, R.M. Jamiolkowski, D.M. Albala, M.L. Shapiro, J.H. Lawson, A comprehensive review of topical hemostatic agents: efficacy and recommendations for use, Ann. Surg. 251 (2010) 217-228.

DOI: 10.1097/sla.0b013e3181c3bcca

Google Scholar

[2] W.R. Wagner, J.M. Pachence, J. Ristich, P.C. Johnson, Comparative in vitro analysis of topical hemostatic agents, J. Surg. Res. 66 (1996) 100-108.

DOI: 10.1006/jsre.1996.0379

Google Scholar

[3] J.T. Correll, H.R. Prentice, E.C. Wise, Biologic investigations of a new absorbable sponge, Surg Gynecol Obstet 81 (1945) 585-589.

Google Scholar

[4] F. Xavier, P. Michèle, B. Anne-Marie, L. Sophie, H.D. Solenn, Q. Jérôme, M. Xavier, D.M. Gilbert, G. Julien, Management options for dental extraction in hemophiliacs: A study of 55 extractions (2000-2002), Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 99 (2005).

DOI: 10.1016/j.tripleo.2004.06.071

Google Scholar

[5] C.E. Magyar, T.L. Aghaloo, E. Atti, S. Tetradis, Osten, a new alkylene oxide copolymer bone hemostatic material, does not inhibit bone healing, Neurosurgery 63 (2008) 373-378.

DOI: 10.1227/01.neu.0000316859.03788.44

Google Scholar

[6] T. Wellisz, Y.H. An, X. Wen, Q. Kang, C.M. Hill, J.K. Armstrong, Infection rates and healing using bone wax and a soluble polymer material, Clin. Orthop. Relat. Res. 466 (2008) 481-486.

DOI: 10.1007/s11999-007-0067-5

Google Scholar

[7] T. Kamide, M. Nakada, Y. Hirota, Y. Hayashi, N. Uchiyama, J.I. Hamada, Skull osteohypertrophy as a complication of bone wax, J. Clin. Neurosci. 16 (2009) 1658-1660.

DOI: 10.1016/j.jocn.2009.03.014

Google Scholar

[8] B. Sudmann, G. Bang, E. Sudman, Histologically verified bone wax (beeswax) granuloma after median sternotomy in 17 of 18 autopsy cases, Pathology 38 (2006) 138-141.

DOI: 10.1080/00313020600561732

Google Scholar

[9] Y. Momota, Y. Miyamoto, K. Ishikawa, M. Takechi, T. Yuasa, S. Tatehara, M. Nagayama, K. Suzuki, Evaluation of feasibility of hydroxyapatite putty as a local hemostatic agent for bone, J. Biomed. Mater. Res. Appl. Biomaterial 63 (2002) 542-547.

DOI: 10.1002/jbm.10332

Google Scholar

[10] J. Tazaki, T. Akazawa, M. Murata, M. Yamamoto, Y. Tabata, R. Yoshimoto, M. Arisue, BMP-2 dose-response and release studies in functionally graded HAp, Key Engineering Materials 309-311 (2006) 965-968.

DOI: 10.4028/www.scientific.net/kem.309-311.965

Google Scholar

[11] M. Murata, T. Akazawa, J. Tazaki, K. Ito, T. Sasaki, M. Yamamoto, Y. Tabata, M. Arisue, Blood permeability of a novel ceramics scaffold for bone morphogenetic protein-2, J. Biomed. Mater. Res. Appl. Biomaterial 81B (2007) 469-475.

DOI: 10.1002/jbm.b.30686

Google Scholar

[12] T. Akazawa, M. Murata, T. Sasaki, J. Tazaki, M. Kobayashi, T. Kanno, K. Nakamura, M. Arisue, Biodegradation and bioabsorption innovation of the functionally graded bovine bone–originated apatite with blood permeability, J. Biomed. Mater. Res. 76A (2006).

DOI: 10.1002/jbm.a.30439

Google Scholar

[13] P. Bickler, J. Brandes, M. Lee, K. Bozic, B. Chesbro, J. Claassen, Bleeding complications from femoral and sciatic nerve catheters in patients receiving low molecular weight heparin, Anesth. Analg. 103 (2006) 1036.

DOI: 10.1213/01.ane.0000237230.40246.44

Google Scholar

[14] R.G. Hardy, L. Williams, J.M. Dixon, Use of enoxaparin results in more haemorrhagic complications after breast surgery than unfractionated heparin, Br. J. Surg. 95 (2008) 834.

DOI: 10.1002/bjs.6422

Google Scholar

[15] B. Lawrence, Understanding and evaluating platelet function, Hematology (2010) 387-396.

Google Scholar

[16] H. Seyednejad, M. Imani, T. Jamieson, A.M. seifalian, Topical haemostatic agents, Br. J. Surg. 95 (10) 1197-1225.

DOI: 10.1002/bjs.6357

Google Scholar

[17] Y. Kuboki, T. Saito, M. Murata, H. Takita, M. Mizuno, M. Inoue, N. Nagai, A.R. Poole, Two distinctive BMP-carriers induce zonal chondrogenesis and membranous ossification, respectively, geometrical factors of matrices for cell-differentiation, Connect Tissue Res. 32 (1995).

DOI: 10.3109/03008209509013726

Google Scholar

[18] U. Ripamonti, S. Ma, A.H. Reddi, The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin: A bone morphogenetic protein, Matrix 12 (1992) 202.

DOI: 10.1016/s0934-8832(11)80063-6

Google Scholar