The Long-Time Low-Temperature Degradation (“LTD”) Kinetics in 3Y-TZP Bioceramics

Article Preview

Abstract:

This work follows a study on hydrothermal aged 3Y-TZP bioceramics, which showed that the surface X-ray diffraction data from moisture exposed samples give distorted results, reflecting a simple linear growth of a partially transformed layer from the surface into the interior. There is no indication for a leveling off or retardation of this growth at elevated temperatures (134°C) and here we present evidence that this is probably true at body temperatures as well. However, the rate constants at body temperature for the studied material are low and indicate a long lifetime. It should be noted that this statement is specific and other materials with minor changes to chemistry or microstructure may behave much better or much worse under those conditions. Furthermore slow crack growth and crack interactions are not yet investigated and may necessitate a minimum of low-temperature degradation susceptibility to ensure reliable long-time use.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

589-594

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Silva, E.A. Bonfante, R.A. Zavanelli, V.P. Thompson, J.L. Ferencz, P.G. Coelho, Reliability of Metalloceramic and Zirconia-based Ceramic Crowns, Journal of Dental Research 89 (2010) 1051-1056.

DOI: 10.1177/0022034510375826

Google Scholar

[2] I. Clarke, M. Manaka, D. Green, P. Williams, G. Pezzotti, Y. Kim, M. Ries, N. Sugano, L. Sedel, C. Delauney, Current status of zirconia used in total hip implants, The Journal of Bone and Joint Surgery 85 (2003) 73.

DOI: 10.2106/00004623-200300004-00009

Google Scholar

[3] M.N. Rahaman, A.H. Yao, B.S. Bal, J.P. Garino, M.D. Ries, Ceramics for prosthetic hip and knee joint replacement, J Am Ceram Soc 90 (2007) 1965-(1988).

DOI: 10.1111/j.1551-2916.2007.01725.x

Google Scholar

[4] T. Sato, M. Shimada, Crystalline Phase Change in Yttria-Partially-Stabilized Zirconia by Low-Temperature Annealing, J Am Ceram Soc 67 (1984) C-212-C-213.

DOI: 10.1111/j.1151-2916.1984.tb19668.x

Google Scholar

[5] M. Yoshimura, T. Noma, K. Kawabata, S. Somiya, Role of H2O on the degradation process of Y-TZP, Journal of Materials Science Letters 6 (1987) 465-467.

DOI: 10.1007/bf01756800

Google Scholar

[6] H. -Y. Lu, H. -Y. Lin, S. -Y. Chen, Autocatalytic Effect and Microstructural Development During Ageing of 3 mol%Y203-TZP, Ceramics International 13 (1987) 207-214.

DOI: 10.1016/0272-8842(87)90064-2

Google Scholar

[7] S. -Y. Chen, H. -Y. Lu, Sintering of 3mol %Y203-TZP and its fracture after ageing treatment, Journal of Materials Science 23 (1988) 1195-1200.

DOI: 10.1007/bf01154578

Google Scholar

[8] E. Lilley, Review of Low Temperature Degredation in Y-TZPs, in: R.E. Tressler, M. McNallan (Eds. ), Corrosion and Corrosive Degradation of Ceramics, Am. Ceram. Soc., 1990, pp.387-407.

Google Scholar

[9] X. Guo, On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor, Journal of Physics and Chemistry of Solids 60 (1999) 539-546.

DOI: 10.1016/s0022-3697(98)00301-1

Google Scholar

[10] S. Deville, J. Chevalier, G. Fantozzi, J.F. Bartolomé, J. Requena, J.S. Moya, R. Torrecillas, L.A. Díaz, Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants, J Eur Ceram Soc 23 (2003).

DOI: 10.1016/s0955-2219(03)00313-3

Google Scholar

[11] J. Chevalier, L. Gremillard, S. Deville, Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants, Annual Review of Materials Research 37 (2007) 1-32.

DOI: 10.1146/annurev.matsci.37.052506.084250

Google Scholar

[12] L. Borchers, M. Stiesch, F.W. Bach, J.C. Buhl, C. Hubsch, T. Kellner, P. Kohorst, M. Jendras, Influence of hydrothermal and mechanical conditions on the strength of zirconia, Acta Biomaterialia 6 (2010) 4547-4552.

DOI: 10.1016/j.actbio.2010.07.025

Google Scholar

[13] M. Cattani-Lorente, S.S. Scherrer, P. Ammann, M. Jobin, H.W. Wiskott, Low temperature degradation of a Y-TZP dental ceramic, Acta Biomaterialia 7 (2011) 858-865.

DOI: 10.1016/j.actbio.2010.09.020

Google Scholar

[14] F. Kern, 2. 75Yb-TZP Ceramics with High Strength and Aging Resistance, Journal of Ceramic Science and Technology 2 (2011) 147-154.

Google Scholar

[15] V. Lughi, V. Sergo, Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry, Dental Materials 26 (2010) 807-820.

DOI: 10.1016/j.dental.2010.04.006

Google Scholar

[16] F. Boulc'h, L. Dessemond, E. Djurado, Delay of tetragonal-to-monoclinic transition in water vapour due to nanostructural effect, J Eur Ceram Soc 24 (2004) 1181-1185.

DOI: 10.1016/s0955-2219(03)00563-6

Google Scholar

[17] B. Cales, Y. Stefani, E. Lilley, Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy Journal of Biomedical Materials Research 28 (1994) 619-624.

DOI: 10.1002/jbm.820280512

Google Scholar

[18] I. Thompson, R.D. Rawlings, Mechanical behaviour of zirconia and zirconia-toughened alumina in a simulated body environment, Biomaterials 11 (1990) 505-509.

DOI: 10.1016/0142-9612(90)90066-y

Google Scholar

[19] R.A. Kimel, J.H. Adair, Aqueous Degradation and Chemical Passivation of Yttria-Tetragonally-Stabilized Zirconia at 25°C, J Am Ceram Soc 85 (2002) 1403-1408.

DOI: 10.1111/j.1151-2916.2002.tb00288.x

Google Scholar

[20] H. Schubert, F. Frey, Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations, J Eur Ceram Soc 25 (2005) 1597-1602.

DOI: 10.1016/j.jeurceramsoc.2004.03.025

Google Scholar

[21] I.L. Denry, J.A. Holloway, Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics, Journal of Biomedical Materials Research Part B: Applied Biomaterials 76B (2006) 440-448.

DOI: 10.1002/jbm.b.30382

Google Scholar

[22] S. Karakoca, H. Yilmaz, Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics, Journal of Biomedical Materials Research Part B: Applied Biomaterials 91B (2009) 930-937.

DOI: 10.1002/jbm.b.31477

Google Scholar

[23] M. Keuper, Nachweis der oberflächennahen Phasenumwandlung von Zirkoniumdioxid: Vergleich von RAMAN Spektoskopie und XRD in: Institut für Geowissenschaften, vol Dipl. -Geowiss., Eberhard-Karls-Universität Tübingen, Tübingen, 2009, p.121.

Google Scholar

[24] M. Keuper, K. Eder, C. Berthold, K.G. Nickel, Direct Evidence for Continous Linear Kinetics in the Low-Temperature Degradation of Y-TZP Zirconia, Acta Biomaterialia (2012) in press.

DOI: 10.1016/j.actbio.2012.08.032

Google Scholar