Titania versus Ceria Alumina/Zirconia Composites: Structural Aspects and Biological Tolerance

Article Preview

Abstract:

The aim of our study is to compare the structural and biological tolerance of novel Al2O3/3Y-TZP composites with ceria respectively titania addition (5 wt%). Scanning electron microscopy, X-ray diffraction, infrared spectroscopy and XPS results are reported for structural characteristics and surface modifications upon different fluoride treatments. The biocompatibility of the samples was evaluated using an animal model (rabbit). The explants were analyzed at a specific period (6 weeks).The sections of implanted bone area were subjected to histological evaluation. Upon correlating the structural properties and in vivo evaluation, we concluded that the addition of both TiO2 and CeO2 to Al2O3/3Y-TZP implies similar properties and satisfactory biological tolerance. With respect to the surface treatment, qualitative and quantitative results show that the alumina/zirconia with titania addition are more sensitive to fluoride treatment.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

595-600

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Macauro, C. Pioni, W. Burger, L. Pilloni, E. De Santis, F. Muratori, Fracture of a Y-TZP ceramic femoral head. Analysis of a fault. J. Bone Joint Surg. Br (2004) 86, 1192-6.

DOI: 10.1302/0301-620x.86b8.15012

Google Scholar

[2] J. Chevalier, What future for zirconia as a biomaterial? Biomaterials (2006) 27, 535-43.

Google Scholar

[3] D. Casellas, M.M. Nagl, L. Llanes, M. Anglada, Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects, J. Mater. Process. Technol. 143-144 (2003) 148-152.

DOI: 10.1016/s0924-0136(03)00396-0

Google Scholar

[4] F. Meng, C. Liu, F. Zhang, Z. Tian, W. Huang, Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering, J. Alloys Compd. 512 (2012) 63-67.

DOI: 10.1016/j.jallcom.2011.09.015

Google Scholar

[5] J. Chevalier, B. Cales, J. M. Drouin, Low temperature aging of Y–TZP ceramics, J. Am. Ceram. Soc. 82 (1999) 2150–2154.

DOI: 10.1111/j.1151-2916.1999.tb02055.x

Google Scholar

[6] A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 23 (2002) 937–945.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar

[7] I. Akin, E. Yilmaz, F. Sahin, O. Yucel, G. Goller, Effect of CeO2 addition on densification and microstructure of Al2O3–YSZ composites, Ceram. Int. 37 (2011) 3273–3280.

DOI: 10.1016/j.ceramint.2011.05.123

Google Scholar

[8] K. Tsukama, Conversion from β-Ce2O3. 11Al2O3 to α-Al2O3 in tetragonal ZrO2 matrix, J. Am. Ceram. Soc. 83 (2000) 3219–3221.

Google Scholar

[9] K. Duan, R. Wang, Surface modifications of bone implants through wet chemistry, J. Mater. Chem. 16( 2006) 2309-232.

DOI: 10.1039/b517634d

Google Scholar

[10] N.R.F. A. Silva, I. Sailer, Y. Zhang, P. G. Coelho, P. C. Guess, A. Zembic, R. J. Kohal, Performance of zirconia for dental healthcare, Materials 3 (2010) 863-896.

DOI: 10.3390/ma3020863

Google Scholar

[11] F. Hattab, The state of fluorides in toothpastes, J. Dent. 17 (1989) 47-54.

Google Scholar

[12] A. Pearce, R. G. Richards, S. Milz, E. Schneider, S. G. Pierce, Animal models for implant biomaterial research in bone: a review, European Cells and Materials13 (2007) 1-10.

DOI: 10.22203/ecm.v013a01

Google Scholar

[13] V. Simon, D. Eniu, A. Gritco, S. Simon, Thermal and spectroscopic investigation of sol-gel derived aluminosilicate bioglass matrices, JOAM 9, 11 (2007)3368-3371.

Google Scholar

[14] V. Simon, S. Cavalu, I. Akin, O. Yucel, G. Goller, XRD and FTIR investigation of zirconia- toughened alumina composites, Studia UBB Physica, LVI, 1 (2011) 67-71.

Google Scholar

[15] C. Piconi, G. Maccauro, F. Muratori, E. Brach del Prever, Alumina and Zirconia ceramics in joint replacements, J. Applied Biomaterials&Biomechanics 1 (2003) 19-32.

DOI: 10.1007/978-1-84882-664-9_5

Google Scholar

[16] K. Mustafa, A. Wennerberg, K. Arvidson, E. B. Messelt, P. Haag, S. Karlsson, Influence of modifying and veneering the surface of ceramic abutments on cellular attachment and proliferation, Clin. Oral Impl. Res. 19 (2008) 1178-1187.

DOI: 10.1111/j.1600-0501.2008.01560.x

Google Scholar