Effects of pH Values on the Structure, Composition and Luminescence of CaWO4:Tb3+ Thin Films

Article Preview

Abstract:

It is hardly possible to obtain rare earth doped CaWO4 thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize Tb3+-doped CaWO4 thin films. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that Tb3+-doped CaWO4 films have a tetragonal phase. The ratio of n(Tb)/[n(Ca)+n(Tb)+n(Na)] decreases with the increase of pH value of TbCl3 solutions. When the pH value (adjusted by NaOH) is higher than 5, Na element has been detected in CaWO4:Tb3+ thin films. Based on the analysis on the composition and luminescence, it can be concluded that the pH value of TbCl3 solutions must be no higher than 9.1, otherwise, no Tb3+-doped CaWO4 thin films can be obtained. Under the excitation of 237 nm, sharp emission peaks at 543 and 489 nm have been observed for Tb3+-doped CaWO4:Tb3+ thin films.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

204-207

Citation:

Online since:

December 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Bayer and H.G. Wiedemann: Thermochim Acta 133 (1988), 125.

Google Scholar

[2] A.G. Page, S.V. Godbole and M.D. Sastry: J. Phys. Chem. Solids 50 (1989), 571.

Google Scholar

[3] T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev: Opt. Mater. 15 (2000), 205.

Google Scholar

[4] L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko and N.M. Polozkov: Opt. Mater. 23 (2003), 439.

DOI: 10.1016/s0925-3467(02)00335-x

Google Scholar

[5] P. Cerny, P.G. Zverev, H. Jelinkova and T.T. Basiev: Opt. Commun. 177 (2000), 397.

Google Scholar

[6] S.K. Shi, J. Gao and J. Zhou: Opt. Mater. 30 (2008), 1616.

Google Scholar

[7] T.H. Jagemann, F.V. Feilitzsch, H. Hagn, J. Jochum, W. Potzel, W. Rau, M. Stark and W. Westphal: Astroparticle Physics 26 (2006), 269.

DOI: 10.1016/j.astropartphys.2006.06.010

Google Scholar

[8] D. Christofilos, K. Papagelis, S. Ves, G.A. Kourouklis and C. Raptis: J. Phys.: Condens. Matter 14 (2002), 12641.

DOI: 10.1088/0953-8984/14/47/334

Google Scholar

[9] W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata and M. Yoshimura: Appl. Phys. Lett. 66 (1995), 1027.

Google Scholar

[10] C.T. Xia, V.M. Fuenzalida and R.A. Zarate: J. Alloy. Compd. 316 (2001), 250.

Google Scholar

[11] L.P. Chen and Y.H. Gao: Mater. Res. Bull. 42 (2007), 1823.

Google Scholar

[12] M.J. Treadaway and R.C. Powell: J. Chem. Phys. 61 (1974), 4003.

Google Scholar

[13] L.P. Chen, China Patent 201010153529.9. (2010) (In Chinese)

Google Scholar

[14] L.P. Chen, Y.H. Gao, J.X. Yuan, Q.H. Zhang, Y.H. Yin and C.X. Wang: Adv. Mater. Res. 194-196 (2011), 2458.

Google Scholar

[15] L.P. Chen and Y.H. Gao, China Patent 201010034421.8. (2010) (In Chinese)

Google Scholar

[16] W.Q. Yin, M.Q. Chen, T.H. Lu, Akashi Mitsuru and X.H Huang: Acta Chimica Sinica 64 (2006), 2127. (In Chinese)

Google Scholar