Effect of Accumulative Roll Bonding Process with Inter-Cycle Heat Treatment on Microstructure and Microhardness of AA1050 Alloy

Article Preview

Abstract:

Processes with severe plastic deformation (SPD) may be defined as metal forming processes in which ultra-large plastic strain is introduced into a bulk metal in order to create ultra-fine grained (UFG) metals. Accumulative roll bonding (ARB) is a SPD process that may be defined as multisteps rolling process in order to create high strength metals with UFG structure. In this study, ARB process with inter-cycle annealing is carried out on the commercial purity aluminium (AA1050) sheet up to 13 cycles. The purpose of the present study is investigation of microhardness behavior and microstructural evolution in the ARB processed AA1050 sheet. Micro-Vickers hardness measurement is carried out throughout thickness of the ARB processed sheets. In addition, with increasing ARB cycles the grains size is reduced in nanometer level.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

623-626

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R Rezaei, M.R Toroghinejad and F. Ashrafizadeh: Journal of Materials ProcessingTechnology Vol. 211 (2011), p.1184–90.

Google Scholar

[2] M. FadaeiNaeini, M.H Shariat and M. Eizadjou: Journal of Alloys and Compounds Vol. 509 (2011), pp.4696-700.

Google Scholar

[3] M. Dehghan, F. Qods and M. Gerdooei: Materials Science Forum Vols. 702-703 (2012), pp.147-50.

Google Scholar

[4] H. Pirgazi, A. Akbarzadeh, R. Petrov and L. Kestens: Materials Science and Engineering A Vol. 497 (2008), pp.132-38.

Google Scholar

[5] M. Eizadjou, H. DaneshManesh and K. Janghorban: Journal of Alloys and Compounds Vol. 474 (2009), p.406–15.

Google Scholar

[6] S. G Chowdhury, V.C. Srivastava, B. Ravikumar and S. Soren:ScriptaMaterialia Vol. 54 (2006), pp.1691-96.

Google Scholar

[7] N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu and M. Kiritani: Materials Science and Engineering A Vol.350 (2003), pp.108-16.

DOI: 10.1016/s0921-5093(02)00709-8

Google Scholar

[8] N. Kamikawa, X. Huang, N. Tsuji and N. Hansen:ActaMaterialia Vol. 57 (2009), pp.4198-208.

Google Scholar

[9] R. NasiriDehsorkhi, F. Qods and M. Tajally: Materials Science and Engineering A Vol. 530 (2011), pp.63-72.

Google Scholar

[10] K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier and M.Y. Zheng:Materials Science and Engineering A Vol. 527 (2010), pp.3073-78.

Google Scholar

[11] M. Eizadjou, A. KazemiTalachi, H. DaneshManesh, H. Shakur Shahabi and K. Janghorban:Composites Science and Technology Vol. 68 (2008), pp.2003-09.

Google Scholar

[12] A. Kolahi, A. Akbarzadeh and M.R. Barnett: journal of materials processing technology Vol. 209 (2009), pp.1436-44.

Google Scholar

[13] S. Pasebani and M.R. Toroghinejad: Materials Science and EngineeringA Vol. 527 (2010), pp.491-97.

Google Scholar

[14] G. Min, J.M. Lee, S.B. Kang and H.W. Kim:Materials Letters Vol. 60 (2006), pp.3255-59.

Google Scholar

[15] S. Pasebani, M.R. Toroghinejad, M. Hosseini and J. Szpunar:Materials Science and Engineering A Vol.527 (2010), pp.2050-56.

Google Scholar

[16] S.A Hosseini and H. DaneshManesh:Materials and Design Vol. 30 (2009), pp.2911-18.

Google Scholar