Effect of Accumulative Roll Bonding Process with Inter-Cycle Heat Treatment on Microstructure and Microhardness of AA1050 Alloy

Abstract:

Article Preview

Processes with severe plastic deformation (SPD) may be defined as metal forming processes in which ultra-large plastic strain is introduced into a bulk metal in order to create ultra-fine grained (UFG) metals. Accumulative roll bonding (ARB) is a SPD process that may be defined as multisteps rolling process in order to create high strength metals with UFG structure. In this study, ARB process with inter-cycle annealing is carried out on the commercial purity aluminium (AA1050) sheet up to 13 cycles. The purpose of the present study is investigation of microhardness behavior and microstructural evolution in the ARB processed AA1050 sheet. Micro-Vickers hardness measurement is carried out throughout thickness of the ARB processed sheets. In addition, with increasing ARB cycles the grains size is reduced in nanometer level.

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang

Pages:

623-626

Citation:

M. Dehghan et al., "Effect of Accumulative Roll Bonding Process with Inter-Cycle Heat Treatment on Microstructure and Microhardness of AA1050 Alloy", Key Engineering Materials, Vols. 531-532, pp. 623-626, 2013

Online since:

December 2012

Export:

Price:

$41.00

[1] M. R Rezaei, M. R Toroghinejad and F. Ashrafizadeh: Journal of Materials ProcessingTechnology Vol. 211 (2011), p.1184–90.

[2] M. FadaeiNaeini, M. H Shariat and M. Eizadjou: Journal of Alloys and Compounds Vol. 509 (2011), pp.4696-700.

[3] M. Dehghan, F. Qods and M. Gerdooei: Materials Science Forum Vols. 702-703 (2012), pp.147-50.

[4] H. Pirgazi, A. Akbarzadeh, R. Petrov and L. Kestens: Materials Science and Engineering A Vol. 497 (2008), pp.132-38.

[5] M. Eizadjou, H. DaneshManesh and K. Janghorban: Journal of Alloys and Compounds Vol. 474 (2009), p.406–15.

[6] S. G Chowdhury, V.C. Srivastava, B. Ravikumar and S. Soren: ScriptaMaterialia Vol. 54 (2006), pp.1691-96.

[7] N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu and M. Kiritani: Materials Science and Engineering A Vol. 350 (2003), pp.108-16.

[8] N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: ActaMaterialia Vol. 57 (2009), pp.4198-208.

[9] R. NasiriDehsorkhi, F. Qods and M. Tajally: Materials Science and Engineering A Vol. 530 (2011), pp.63-72.

[10] K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier and M.Y. Zheng: Materials Science and Engineering A Vol. 527 (2010), pp.3073-78.

[11] M. Eizadjou, A. KazemiTalachi, H. DaneshManesh, H. Shakur Shahabi and K. Janghorban: Composites Science and Technology Vol. 68 (2008), pp.2003-09.

[12] A. Kolahi, A. Akbarzadeh and M.R. Barnett: journal of materials processing technology Vol. 209 (2009), pp.1436-44.

[13] S. Pasebani and M.R. Toroghinejad: Materials Science and EngineeringA Vol. 527 (2010), pp.491-97.

[14] G. Min, J.M. Lee, S.B. Kang and H.W. Kim: Materials Letters Vol. 60 (2006), pp.3255-59.

[15] S. Pasebani, M.R. Toroghinejad, M. Hosseini and J. Szpunar: Materials Science and Engineering A Vol. 527 (2010), pp.2050-56.

[16] S. A Hosseini and H. DaneshManesh: Materials and Design Vol. 30 (2009), pp.2911-18.