Influence of Intermediate Principal Stress Effect on Flat Punch Problems

Article Preview

Abstract:

Using the finite difference code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) and UST (Unified Strength Theory), the influence of the intermediate principal stress effect on the problems of flat punch are analyzed in this paper. The values of the ultimate bearing capacity resulting from numerical analyses and the analytical solution of Prandtl’s strip punch problem are compared. The three-dimensional problems of strip, rectangular, square and circular punches on a semi infinite metallic medium have been analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

300-305

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Lode, Versuche ueber den Einlfuss der mittleren Hauptspannung auf dsa fliessen der metals eisen kupfer und nickel. Z. Physik. 36 (1926) 913-939.

DOI: 10.1007/bf01400222

Google Scholar

[2] G.I. Taylor, H. Quinney, The plastic distortion of metals. Phil. Trans. Roy. Soc. 230 (1931) 323-362.

Google Scholar

[3] H.J. Ivey, Plastic stress-strain relations and yield surfaces for aluminium alloys, J. Mech. Eng. Sci. 3 (1961) 15-31.

Google Scholar

[4] W.M. Mair, H.L.D. Pugh, Effect of pre-strain on yield surfaces in copper, J. Mech. Eng. Sci. 6 (1964) 150-163.

Google Scholar

[5] R. Hill, The Mathematical Theory of Plasticity, Oxford, Oxford University Press, 1950.

Google Scholar

[6] M.H. Yu, Unified strength theory and its applications, Berlin, Springer, 2004.

Google Scholar

[7] M.H. Yu, Advances in strength theories for materials under complex stress state in the 20th Century, Applied Mechanics Reviews ASME. 55(3) (2002) 169-218.

DOI: 10.1115/1.1472455

Google Scholar

[8] L. Prandtl, Uber die Härte plasticher Körper. Nachrichten von der Königlichen Gesellschaft der Wissenschaften, Göttingen, Math.-phys. Klasse. (1920) 74-85.

Google Scholar

[9] R.T. Shield, On the plastic flow of metals under conditions of axial symmetry, Proc. R. Soc. London, Ser. A, 233 (1955) 267-287.

DOI: 10.1098/rspa.1955.0262

Google Scholar

[10] A.D. Cox, G. Eason, H.G. Hopkins, Axially Symmetric Plastic Deformation in Soils, Philos. Trans. R. Soc. London, Ser. A, 1036 (1961) 1-45.

Google Scholar

[11] Itasca Consulting Group, FLAC3D-Fast lagrangian analysis of continua in 3 Dimensions, version 2.0, User's manual, Minneapolis, 1997.

Google Scholar

[12] W.T. Koiter, Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surface, Quart. Appl. Math. 11 (1953) 350-354.

DOI: 10.1090/qam/59769

Google Scholar

[13] S.W. Sloan, J.R. Booker, Removal of singularities in Tresca and Mohr-Coulomb yield functions, Commun Appl Numer Mech. 2 (1986) 173-179.

DOI: 10.1002/cnm.1630020208

Google Scholar

[14] T.M. Tan, S. Li, P.C. Chou, Finite Element Solution of Prandtl's Flat Punch Problem, Finite Elements in Analysis and Design. 1(6) (1989) 173-186.

DOI: 10.1016/0168-874x(89)90042-5

Google Scholar