Effect of Li0.8Ca0.2F1.2 on Sintering and Microwave Dielectric Properties of (Mg0.95Zn0.05)(Ti0.8Sn0.2)O4 Ceramics

Article Preview

Abstract:

The effects of Li0.8Ca0.2F1.2 doped on the sinterability, phase constitutions and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 (MZTS) ceramics were investigated. The crystal structure was analyzed using X-ray diffraction. With 3.0 wt% Li0.8Ca0.2F1.2 addition, the densification sintering of MZTS ceramics was significantly lowed from 1325 oC to 1150 oC due to the liquid phase sintering. Secondary phases CaTiO3 and MgO were formed by reaction between MZTS and CaF2. 3.0wt% Li0.8Ca0.2F1.2-doped MZTS ceramics at 1150 oC for 5 h exhibited dielectric properties: εr=13.4, Qxf=46 672.3 GHz (at 9.3 GHz).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-269

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kumar, R. Kumar and B. H. Koo: J. Ceram. Soc. Jpn. Vol. 117 (2009), p.689.

Google Scholar

[2] A. Belous, O. Ovchar and D. Durilin: J. Am. Ceram. Soc. Vol. 89 (2006), p.3441.

Google Scholar

[3] A. Belous, O. Ovchar and Danilo Suvorov: J. Eur. Ceram. Soc. Vol. 27 (2007) p.2963.

Google Scholar

[4] C. L. Huang, J. Y. Chen and C.Y. Jiang:  J. Alloy. Compd. Vol. 487 (2009) p.420.

Google Scholar

[5] C. L. Huang, S. S. Liu: J. Am. Ceram. Soc. Vol. 91 (2008) p.3428.

Google Scholar

[6] C. L. Huang, J. Y. Chen: J. Am. Ceram. Soc. Vol. 92 (2009) p.379.

Google Scholar

[7] C. L. Huang, J. Y. Chen: J. Am. Ceram. Soc. Vol. 92 (2009) p.2237.

Google Scholar

[8] H. Zhu, W.Z. Lu andW. Lei: Ceram. Int. Vol. 37 (2011) p.1515.

Google Scholar

[9] G. G. Yao, P. Liu: J. Ceram. Process. Res. Vol. 13 (2012), p.235.

Google Scholar

[10] L. Fang, Y. Tang and H. F. Zhou: J Mater Sci: Mater. Electron. Vol. 23 (2012) p.478.

Google Scholar

[11] M. Pollet, S. Marinel: J. Eur. Ceram. Soc. Vol. 23 (2003), p.1925.

Google Scholar

[12] L. H. Cao, S. H. Zhi and X. Yao: Ferroelectric. Vol. 403 (2010), p.119.

Google Scholar

[13] Y. Liu, H. X. Liu and Z. H. Liu: Mater. Technol. Vol. 25 (2010), p.19.

Google Scholar

[14] C. L. Huang, Y. W. Tseng and J. Y. Chen: J. Eur. Ceram. Soc. Vol. 32 (2012), p.3287.

Google Scholar

[15] P. S. Anjana, M. T. Sebastian: Int. J. Am. Ceram. Soc. Vol. 92 (2009), p.96.

Google Scholar

[16] A. Kan, T. Moriyama, and H. Ogawa: Jpn. J. Appl. Phys. 50 (2011) 09NF02.

Google Scholar

[17] C. L. Huang, J. Y. Chen and C. C. Liang: Mater. Res. Bull. 44 (2009) 1111.

Google Scholar

[18] E. S. Jim, S. N. Seo: Ceram. Int. Vol. 38 (2012), p. S163.

Google Scholar