Optimal Design of PZT Actuators and Sensors in Composite Structural Elements

Article Preview

Abstract:

In this paper, the various optimization criteria used for optimal placement of piezoelectric actuators on laminated structures are discussed. Piezoelectric materials are used as layers or fibers that are embedded within or bonded to the surfaces of a structure. The present formulation of optimal design introduces also boundaries of piezoelectric patches as new class of design variables.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-73

Citation:

Online since:

February 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bent A.A., Hagood N.W., Rodgers J.P., Anisotropic actuation with piezoelectric fiber composites, J. Intell. Mater. Syst. Struct. 6 (1995) 338-349.

DOI: 10.1177/1045389x9500600305

Google Scholar

[2] Bent A.A., Hagood N.W., Piezoelectric fiber composites with interdigitated electrodes, J. Intell. Mater. Syst. Struct. 8 (1997) 903-919.

Google Scholar

[3] High J., Wilkie W., Method of fabricating NASA-standard macro-fiber piezocomposite actuators, NASA/TM-2003-212427 ARL TR 2833; (2003).

Google Scholar

[4] Livneh S.S., Janas V.F., Safari A., Development of fine scale PZT ceramic fiber/polymer shell composite transducers, J. Am. Ceram. Soc. 78 (1995) 1900-(1906).

DOI: 10.1111/j.1151-2916.1995.tb08907.x

Google Scholar

[5] Steinhausen R., Hauke T., Seifert W., Beige H., Watzka W., Seifert S., Sporn D., Starke S., Schonecker A., Finescaled piezoelectric 1–3 composites: properties and modeling, J. Eur. Ceram. Soc. 19 (1999) 1289-1293.

DOI: 10.1016/s0955-2219(98)00422-1

Google Scholar

[6] Crawley E.F., de Luis J., Use of piezoelectric actuators as elements of intelligent structures, AIAA J. 25 (1987) 1373-1385.

DOI: 10.2514/3.9792

Google Scholar

[7] Crawley E.F., Lazarus K.B., Induced strain actuation of isotropic and anisotropic plates, AIAA J. 29 (1991) 944-951.

DOI: 10.2514/3.10684

Google Scholar

[8] Thomson S.P., Loughlan J., The active buckling control of some composite column using piezoceramic actuators, Comp. Struct. 32 (1995) 59-67.

DOI: 10.1016/0263-8223(95)00048-8

Google Scholar

[9] de Faria A.R., de Almeida S.F.M., Enhancement of pre-buckling behavior of composite beams with geometric imperfections using piezoelectric actuators, Composites: Part B 30 (1999) 43-50.

DOI: 10.1016/s1359-8368(98)00047-x

Google Scholar

[10] Franco Correia V.M., Mota Soares C.M., Mota Soares C.A., Buckling optimization of composite laminated adaptive structures, Comp. Struct. 62 (2003) 315-321.

DOI: 10.1016/j.compstruct.2003.09.030

Google Scholar

[11] Franco Correia V.M., Aguiar Gomes M.A., Suleman A., Mota Soares C.M., Mota Soares C.A., Modelling and design of adaptive composite structures, Comput. Methods Appl. Mech. Eng. 185 (2000) 325-346.

DOI: 10.1016/s0045-7825(99)00265-0

Google Scholar

[12] Franco Correia V.M., Mota Soares C.M., Mota Soares C.A., Refined models for the optimal design of adaptive structures using simulated annealing, Comp. Struct. 54 (2001) 161-167.

DOI: 10.1016/s0263-8223(01)00085-x

Google Scholar

[13] Ramos Loja M.A., Mota Soares C.M., Mota Soares C.A., Modelling and design of adaptive structures using B-spline strip models, Comp. Struct. 57 (2002) 245-251.

DOI: 10.1016/s0263-8223(02)00091-0

Google Scholar

[14] Adali S., Sadek I.S., Bruch J.C. Jr, Sloss J.M., Optimization of composite plates with piezoelectric stiffener-actuators under in-plane compressive loads, Comp. Struct. 71 (2005) 293-301.

DOI: 10.1016/j.compstruct.2005.09.040

Google Scholar

[15] Moon S.H., Finite element analysis and design of control system with feedback output using piezoelectric sensor/actuator for panel flutter suppression, Finite Elem. Anal. Des. 42 (2006) 1071-1078.

DOI: 10.1016/j.finel.2006.04.001

Google Scholar

[16] Chee C., Tong L., Steven G.P., Piezoelectric actuator orientation optimization for static shape control of composite plates, Comp. Struct. 55 (2002) 169-184.

DOI: 10.1016/s0263-8223(01)00144-1

Google Scholar

[17] Koconis D.B., Kollar L.P., Springer G.S., Shape control of composite plates and shells with embedded actuators: II. Desired shape specified, J. Compos. Mater. 28 (1994) 262-285.

DOI: 10.1177/002199839402800305

Google Scholar

[18] Batra R.C., Liang X.Q., The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators, Comput. Struct. 63 (1997) 203-216.

DOI: 10.1016/s0045-7949(96)00349-5

Google Scholar

[19] Mota Soares C.M., Mota Soares C.A., Franco Correia V.M., Optimal design of piezolaminated structures, Comp. Struct. 47 (1999) 625-634.

DOI: 10.1016/s0263-8223(00)00036-2

Google Scholar

[20] Simoes Moita J.M., Franco Correia V.M., Martins P.G., Mota Soares C.M., Mota Soares C.A., Optimal design in vibration control of adaptive structures using a simulated annealing algorithm, Comp. Struct. 75 (2006) 79-87.

DOI: 10.1016/j.compstruct.2006.04.062

Google Scholar

[21] Roy T., Chakraborty D., Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm, J. Sound. Vib. 319 (2009) 15-40.

DOI: 10.1016/j.jsv.2008.05.037

Google Scholar

[22] Han J., Lee I., Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms, Smart Mater. Struct. 8 (1999) 257-267.

DOI: 10.1088/0964-1726/8/2/012

Google Scholar

[23] Jin A., Yang Y., Soh Ch.K., Application of fuzzy GA for optimal vibration control of smart cylindrical shells, Smart Mater. Struct. 14 (2005) 1250-1264.

DOI: 10.1088/0964-1726/14/6/018

Google Scholar

[24] Frecker M.I., Recent advances in optimization of smart structures and actuators, J. Intell. Mater. Syst. Struct. 14 (2003) 207-216.

Google Scholar

[25] Wang Q., Quek S.T., Liu X., Analysis of piezoelectric coupled circular plate, Smart Mater. Struct. 10 (2001) 229-239.

DOI: 10.1088/0964-1726/10/2/308

Google Scholar

[26] Yang Y., Zhang L., Optimal excitation of a rectangular plate resting on an elastic foundation by a piezoelectric actuator, Smart Mater. Struct. 15 (2006) 1063-1078.

DOI: 10.1088/0964-1726/15/4/020

Google Scholar

[27] Kang Z., Tong L., Topology optimization-based distribution design of actuation voltage in static shape control of plates, Comput. Struct. 86 (2008) 1885-1893.

DOI: 10.1016/j.compstruc.2008.03.002

Google Scholar

[28] Wang Q., Wang C.M., A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures, J. Sound Vibr. 312 (2001) 210-233.

DOI: 10.1006/jsvi.2000.3357

Google Scholar

[29] Quek S.T., Wang S.Y., Ang K.K., Vibration control of composite plates via optimal placement of piezoelectric patches, J. Intell. Mater. Syst. Struct. 14 (2003) 229-245.

DOI: 10.1177/1045389x03034686

Google Scholar

[30] Ryall T.G., Two considerations for the design of a robust optimal smart structure where control energy is expensive, in: Smart Structures and Devices, Proceedings of SPIE, 4235 (2001) 355-362.

DOI: 10.1117/12.420877

Google Scholar

[31] Sun D.C., Wu H.X., Wang D.J., Modal control of smart plates and optimal placement of piezoelectric actuators, in: Proc. Inter. Conf. Vib. Eng., Northeastern University Press, Dalian, China, 1998, pp.551-555.

Google Scholar

[32] Ip K.H., Tse P.C., Optimal configuration of a piezoelectric patch for vibration control of isotropic rectangular plates, Smart Mater. Struct. 10 (2001) 395-403.

DOI: 10.1088/0964-1726/10/2/401

Google Scholar

[33] Papila M., Sheplakb M., Cattafesta III L.N., Optimization of clamped circular piezoelectric composite actuators, Sensor Actuat. A-Phys. 147 (2008) 310-323.

DOI: 10.1016/j.sna.2008.05.018

Google Scholar

[34] Bin L., Yugang L., Xuegang Y., Shanglian H., Maximal modal force rule for optimal placement of piezoelectric actuators for plates, J. Intell. Mater. Syst. Struct. 11 (2000) 512-515.

DOI: 10.1177/104538900772664521

Google Scholar

[35] Miki M., Optimum design of fibrous laminated plates subjected to axial compression, in: Proc. 3rd Japan-US composite Materials Conf., Tokyo, 1986, pp.673-681.

Google Scholar

[36] Fukunaga H., Vanderplaats G.N., Stiffness optimization of orthotropic laminated composites using lamination parameters, AIAA J. 29 (1991) 641-648.

DOI: 10.2514/3.59931

Google Scholar

[37] Muc A., Muc-Wierzgoń M., An evolution strategy in structural optimization problems for plates and shells, Comp. Struct. 94 (2012) 1461-1470.

DOI: 10.1016/j.compstruct.2011.11.007

Google Scholar

[38] Muc A., Kędziora P., Optimal design of smart laminated composite structures, Materials and Manufacturing Processes, Taylor & Francis Group, 25 (2010) 272-280.

DOI: 10.1080/10426910903426463

Google Scholar

[39] Muc A., Kędziora P., Optimal design of eigenfrequencies for composite structures having piezoelectric sensors or actuators, in: Gábor Stépán, László L. Kovács and András Tóth (Eds. ), IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, IUTAM Bookseries, Springer, Volume 30, 2011, pp.231-238.

DOI: 10.1007/978-94-007-1643-8_26

Google Scholar

[40] Kędziora P., Muc A., Optimal shapes of PZT actuators for laminated structures subjected to displacement or eigenfrequency constraints, Comp. Struct. 94 (2012) 1224-1235.

DOI: 10.1016/j.compstruct.2011.11.019

Google Scholar