[1]
Iijima, S., Helical microtubes of graphitic carbon, Nature, 354, 1991, pp.56-8.
Google Scholar
[2]
Dereli G., Ozdogan C., Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain. Physical Review B 2003; 67: 0354161–6.
DOI: 10.1103/physrevb.67.035416
Google Scholar
[3]
Ogata S., Shibutani Y., Ideal tensile strength and band gap of singlewalled carbon nanotubes. Physical Review B 2003; 68: 1654091–4.
DOI: 10.1103/physrevb.68.165409
Google Scholar
[4]
Mielke S.L., Troua D., Zhang S., Li J.L., Xiao S., Car R., et al. The role of vacancy defect and holes in the fracture for carbon nanotubes. Chemical Physics Letters 2004; 390: 413–20.
DOI: 10.1016/j.cplett.2004.04.054
Google Scholar
[5]
Yakobson B.I., Campbell M.P., Brabec C.J., Bernholc J., High strain rate fracture and C-chain unraveling in carbon nanotubes. Computational Material Science 1997; 8: 341–8.
DOI: 10.1016/s0927-0256(97)00047-5
Google Scholar
[6]
Yu M.F., Files B.S., Arepalli S., Ruoff R.S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters 2000; 84: 5552–5.
DOI: 10.1103/physrevlett.84.5552
Google Scholar
[7]
Muc, A., Modeling of carbon nanotubes behaviour with the use of a thin shell theory, J Th Appl Mech, (2011).
Google Scholar
[8]
Muc A., Design and identification methods of effective mechanical properties for carbon nanotubes. Mat Des (2010), 31: 1671-1675.
DOI: 10.1016/j.matdes.2009.03.046
Google Scholar
[9]
Muc A., Modeling of CNTs/nanocomposites deformations and tensile fracture. Proc. 17th International Conference on Composite Materials (ICCM-17), 2009, Edinburgh UK.
Google Scholar
[10]
Muc A., Chwał M., Vibration control of defects in carbon nanotubes, Solid Mechanics and its Applications Volume 30, 2011, pp.239-246.
Google Scholar