[1]
Rabinow J., The magnetic fluid cluch, AIEE Trans 67, (1948).
Google Scholar
[2]
Yang G., Spencer B. F., Carlson J. D., Sain M. K., Large-scale MR fluid dumpers: modeling and dynamic performance considerations, Eng. Struct. 24, (2002), 309 - 323.
DOI: 10.1016/s0141-0296(01)00097-9
Google Scholar
[3]
Sapiński B., Magnetoreological Dampers in Vibration Control, AGH University of Science and Technology Press, Cracow, (2006).
Google Scholar
[4]
Li W. H., Du H., Design and Experimental Evaluation of a Magnetorheological Brake, Int. J. Adv. Manuf. Technol. 21, (2003), 508 - 515.
Google Scholar
[5]
Li W. H., Du H., Guo N. Q., Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve, Int. J. Adv. Manuf. Technol. 21, (2003), 438 - 445.
Google Scholar
[6]
Winslow W. M., Induced fibration of suspension, J. Appl. Phys. 20, (1949).
Google Scholar
[7]
Frenkel D., Introduction to Monte Carlo Methods, Computational Soft Matter: Synthetic Polymers to Proteins, Lecture Notes, N. Attig, K. Binder, H. Grubmüller, K. Kremer (eds), John von Neumann Institute for Computing, Jülich, NIC Series, 23 (2004).
Google Scholar
[8]
Allen M. P., Introduction to Molecular Dynamics Simulation, Computational Soft Matter: Synthetic Polymers to Proteins, Lecture Notes, N. Attig, K. Binder, H. Grubmüller, K. Kremer (eds), John von Neumann Institute for Computing, Jülich, NIC Series, 23 (2004).
Google Scholar
[9]
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. N., Teller E., Equation of state calculations by fast computing machines, J. Chem. Phys. 21, (1953), 1087-1092.
DOI: 10.2172/4390578
Google Scholar
[10]
Fermi E., Pasta J. G., Ulam S. M., Studies of non - linear problems, LASL Report, LA-1940, (1955).
Google Scholar
[11]
Alder B. J., Wainwright T. A., In I. Prigogine (ed. ), Proceedings of the International Symposium on Statistical Mechanical Theory of Transport Processes (Brussels, 1956), Interscience, New York, (1956).
Google Scholar
[12]
Gibson J. B., Goland A. N., Milgram M., Vineyard G. H., Dynamics of radiation damage, Phys. Rev. 120, (1960), 1229 - 1253.
DOI: 10.1103/physrev.120.1229
Google Scholar
[13]
Rahman A., Correlations in the motion of atoms in liquid argon, Phys. rev. 136, (1964), A405 - A411.
DOI: 10.1103/physrev.136.a405
Google Scholar
[14]
Verlet L., Computer experiments, on classical fluids. i. thermodynamical properties of Lennard - Jones molecules, Phys. Rev. 159, (1967), 98 - 103.
DOI: 10.1103/physrev.159.98
Google Scholar
[15]
Barker J. A., Watts R. O., Structure of the water: A Monte Carlo calculation, Chem. Phys. Lett 3, (1969), 144 - 145.
Google Scholar
[16]
McDonald I. R., Singer K., Calculation of the thermodynamic properties of liquid argon from Lennard - Jones parameters by a Monte Carlo method, Discuss. Faraday Soc. 43, (1967).
DOI: 10.1039/df9674300040
Google Scholar
[17]
Chantrell R., Bradbury A., Popplewell J., Charles S., Particle cluster configuration in magnetic fluids. J. Phys. D: Appl. Phys. 13, L119, (1980).
DOI: 10.1088/0022-3727/13/7/003
Google Scholar
[18]
Satoh A., A new technique for metropolis Monte Carlo simulation to capture aggregate structure of fine particles: Cluster - moving Monte Carlo algorithm, J. Colloid. & Interface Sci. 150, (1992), 461 - 472.
DOI: 10.1016/0021-9797(92)90215-8
Google Scholar
[19]
Satoh A., Chantrell R. W., Kamiyama S., Coverdale G. N., Two - Dimensional Monte Carlo Simulations to Capture Thick Chain like Clusters of Ferromagnetic Particles in Colloidal Dispersions, J. Colloid. & Interface Sci. 178, (1996), 620 - 627.
DOI: 10.1006/jcis.1996.0159
Google Scholar
[20]
Aoshima M., Satoh A., Two - dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field, J. Colloid. & Interface Sci. 288, (2005), 475 - 488.
DOI: 10.1016/j.jcis.2005.02.093
Google Scholar
[21]
Satoh A., Three - dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod - like particles with magnetic moment normal to the particle axis, J. Colloid. & Interface Sci. 318, (2008), 68 - 81.
DOI: 10.1016/j.jcis.2007.09.098
Google Scholar
[22]
Parthasarathy M., Klingenberg D. J., Electrorheology: mechanisms and models, Mater. Sci. & Eng. R17, (1996), 57 - 103.
Google Scholar
[23]
Ly H. V., Reitich F., Jolly M. R., Ito K., Banks H. T., Simulations of Particle Dynamics in Magnetorheological Fluids, J. Comp. Phys. 155, (1999), 160 - 177.
DOI: 10.1006/jcph.1999.6335
Google Scholar
[24]
Martin J., Anderson R., Wiliamson R, Generating strange interactions in particle suspensions, Compos. Sci. & Technol. 63, (2003), 1097 - 1103.
Google Scholar
[25]
Qiang LI, YiMin XUAN, Bin LI, Simulation and control scheme of microstructure in magnetic fluids. Sci. China Ser. E – Tech. Sci. 50, (2007), 371-379.
DOI: 10.1007/s11431-007-0037-x
Google Scholar
[26]
Satoh A., Chantrell R. W., Kamiyama S., Coverdale G. N., Stokesian Dynamic Simulations of Ferromagnetic Colloidal Dispersions in a Simple Shear Flow, J. Colloid. & Interface Sci. 203, (1998), 233 - 248.
DOI: 10.1006/jcis.1998.5498
Google Scholar
[27]
Satoh A., Chantrell R. W., Kamiyama S., Coverdale G. N., Brownian Dynamic Simulations of Ferromagnetic Colloidal Dispersions in a Simple Shear Flow, J. Colloid. & Interface Sci. 209, (1999), 44 - 59.
DOI: 10.1006/jcis.1998.5826
Google Scholar
[28]
Joung C., See H., Simulation of magneto – rheological fluids incorporating hydrodynamics effects, J. Cent. South Univ. Technol. s1, (2007), 271 - 274.
DOI: 10.1007/s11771-007-0262-2
Google Scholar
[29]
Joung C., See H., The influence of wall interaction on dynamic particle modeling of magneto – rheological suspensions between shearing plates, Rheol. A 47, (2008), 917 - 927.
DOI: 10.1007/s00397-008-0282-3
Google Scholar
[30]
Pappas Y., Klingenberg D., Simulation of magnetorheological suspensions in Poiseuille flow, Rheol. Acta 45, (2006), 621 - 629.
DOI: 10.1007/s00397-005-0016-8
Google Scholar
[31]
Barski M., Modeling and properties of inclusions immersed in carrier fluid subjected to external field, Procedia Engineering 10, (2011), 1585 - 1590.
DOI: 10.1016/j.proeng.2011.04.265
Google Scholar
[32]
Ghossein E., Lévesque M., A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, Inter. J. Solids & Struct. 49, (2012), 1387 - 1398.
DOI: 10.1016/j.ijsolstr.2012.02.021
Google Scholar
[33]
Lees A. W., Edwards S. F., The computer study of transport process under extreme conditions, J. Phys. C5, (1972).
Google Scholar
[34]
Keaveny E., Maxey M., Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids, J. Comp. Phys. 227, (2008), 9554 - 9571.
DOI: 10.1016/j.jcp.2008.07.008
Google Scholar
[35]
Enomoto Y., Oba K., Okada M., Simulation study on microstructure formations in magnetic fluids, Physica A 330, (2003), 496 - 506.
DOI: 10.1016/s0378-4371(03)00624-1
Google Scholar
[36]
Muc A., Barski M., Homogenization methods for two – phase composites, Mech. of Compos. Mater. 47, (2011), 387 – 394.
DOI: 10.1007/s11029-011-9217-7
Google Scholar