Current Problems in Design of Quantum Dots Used in Semiconductors

Article Preview

Abstract:

The analysis of optoelectromechanical properties of nanostructures in bandstructure engineering is discussed In the paper. It is demonstrated that the design of semiconductors is based on the solution of different forms of the Schrodinger (Helmmholtz) equation, dependant on the form of the Hamiltonian characterizing quantum effects. The formulation can lead to the linear or nonlinear eigenvalue problems. Then, the methods of solutions are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zaslavsky A., Milkove K.R., Lee Y.H., Ferland B., Sedgewick T.O., Strain relaxation in silicon/germanium microstructures observed by resonant tunneling spectroscopy. Applied Physics Letters 67, 3921, (1995).

DOI: 10.1063/1.115318

Google Scholar

[2] Singh J., Physics of semiconductors and their heterostructures. McGraw-Hill, New York. (1993).

Google Scholar

[3] Lassen B., Voon LCLY, Willatzen M., Melnik RVN, Exact envelopefunction theory versus symmetrized Hamiltonian for quantum wires: a comparison. Solid State Commun 2004; 132 (3–4): 141–9.

DOI: 10.1016/j.ssc.2004.07.050

Google Scholar

[4] Koller S., Mayrhofer L., Grifoni M., Spin transport across carbon nanotube quantum dots, New Journal of Physics 9 (2007) 348-384.

DOI: 10.1088/1367-2630/9/9/348

Google Scholar

[5] Melnik, R., Mahapatra R., Coupled effects in quantum dot nanostructures with nonlinear strain and bridging modelling scales, Computers and Structures 85 (2007) 698–711.

DOI: 10.1016/j.compstruc.2007.01.046

Google Scholar

[6] Grundmann M., Stier O. and Bimberg D., Phys. Rev. B 52, 11969 (1995).

Google Scholar

[7] Stier O., Grundmann M. and Bimberg D., Phys. Rev. B 59, 5688 (1999).

Google Scholar

[8] Johnson H.T., Freund L.B., The influence of strain on confined electronic states in semiconductor quantum structures, Int. J. Sol. Struct. 38, 1045-1062 (2001).

DOI: 10.1016/s0020-7683(00)00072-x

Google Scholar

[9] Gelbard F. and Malloy K. J., Modeling Quantum Structures with the Boundary Element Method, J. Comp. Phys. 172, 19–39 (2001).

DOI: 10.1006/jcph.2001.6751

Google Scholar

[10] Voss H., Numerical calculation of the electronic structure for three-dimensional quantum dots, Comp. Phys. Communications 174, 441-446 (2006).

DOI: 10.1016/j.cpc.2005.12.003

Google Scholar

[11] Lew Yan Voon L.C., Willatzen M., Helmholtz equation in parabolic rotational coordinates: application to wave problems in quantum mechanics and acoustics, Math. Comp. in Simulation 65, 337–349, (2004).

DOI: 10.1016/j.matcom.2004.01.006

Google Scholar

[12] Willatzen M., Lew Yan Voon L.C., Numerical implementation of the ellipsoidal wave equation and application to ellipsoidal quantum dots, Comp. Phys. Communications 171, 1–18, (2005).

DOI: 10.1016/j.cpc.2005.04.006

Google Scholar

[13] Li Y., An iterative method for single and vertically stacked semiconductor quantum dots simulation, Math. Comp. Modelling 42, 711-718, (2005).

DOI: 10.1016/j.mcm.2005.09.020

Google Scholar

[14] Cattapan G., Lotti P., Pascolini A., A scattering-matrix approach to the eigenenergies of quantum dots, Physica E 41, 1187-1192, (2009).

DOI: 10.1016/j.physe.2009.01.018

Google Scholar