Evaluation of the Potential In Vivo Genotoxicity of Tungsten (VI) Oxide Nanopowder for Human Health

Article Preview

Abstract:

Tungsten (VI) oxide particles (WO3, <100 nm particle size) are used for many purposes including production of electro chromic windows, or smart windows, x-ray screen phosphors and gas sensors in everyday life. However, the carcinogenic and genotoxic potential of this nanomaterial have not been sufficiently evaluated. Therefore, the genotoxic potential of WO3 was examined in Sprague-Dawley rat bone marrow cells by using mitotic index (MI), micronucleus (MN) and chromosome aberrations (CA) assays. Rats were orally gavaged with a single dose of WO3 (0, 25, 50 and 100 mg/kg) for 30 days. All WO3 treatments significantly decreased MI rates as compared to the control group. No increase in the incidence of CA was observed at any WO3 nanoparticle dose in the CA test although MN formation was significantly (P<0.05) increased for 50 and 100 mg/kg doses. The observed alterations in MN and MI parameters reveal that WO3 has cytotoxic and genotoxic potential and could pose environmental and human health risk.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-92

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Pradyot: Handbook of Inorganic Chemical Compounds (McGraw-Hill, USA 2003).

Google Scholar

[2] L. Erik and S. Wolf-Dieter: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic, USA 1999).

Google Scholar

[3] Tungsten trioxide. The Merck Index (Vol 14, 2006).

Google Scholar

[4] D.E. Williams, S.R. Aliwell, K.F.E. Pratt, D.J. Caruana, R.L. Jones, R. A. Cox, G.M. Hansford and J. Halsall: Meas. Sci. Technol. Vol. 13 (2002), p.923.

DOI: 10.1088/0957-0233/13/6/314

Google Scholar

[5] Information on http: /en. wikipedia. org/wiki/Tungsten_trioxide.

Google Scholar

[6] W.J. Lee: J. Electron. Material. Vol. 29 (2000), p.183.

Google Scholar

[7] M.L. Witten, P.R. Sheppard and B.L. Witten: Chem. Biol. Interact. (2012), in press.

Google Scholar

[8] G.S. Guandalini, L. Zhang, E. Fornero, J.A. Centeno, V.P. Mokashi, P.A. Ortiz, M.D. Stockelman, A.R. Osterburg and G.G. Chapman: Chem. Res. Toxicol. Vol. 24 (2011), p.488.

DOI: 10.1021/tx200011k

Google Scholar

[9] S.M. McInturf, M.Y. Bekkedal, E. Wilfong, D. Arfsten, G. Chapman and Gunasekar PG: Toxicol. Appl. Pharmacol. Vol. 254 (2011), p.133.

DOI: 10.1016/j.taap.2010.04.021

Google Scholar

[10] J.F. Kalinich, C.A. Emond and T.K. Dalton: Environ. Health Perspect. Vol. 113 (2005), p.729.

Google Scholar

[11] L.S. Keith, D.B. Moffett, Z.A. Rosemond, D.W. Wohlers and Agency for Toxic Substances and Disease Registry: Toxicol. Ind. Health. Vol. 23 (2007), p.347.

Google Scholar

[12] National Research Council (NRC): Guide for the Care and Use of Laboratory Animals (National Academy Press, USA 1996).

Google Scholar

[13] N. Erdal, S. Gürgül and A. Celik: Mutat. Res. Vol. 630 (2007), p.69.

Google Scholar

[14] S. Ulitzur and M. Barak: J. Bioluminescence Chemiluminescence Vol. 2 (1988), p.95.

Google Scholar

[15] A.C. Miller and N. Page: Environ. Mutagen. Society Abstract Vol. 141 (1999), p.45.

Google Scholar

[16] G. Hasegawa, M. Shimonaka and Y. Ishihara: J. Appl. Toxicol. Vol. 32 (2012), p.72.

Google Scholar

[17] J.T. Zelikoff, N. Atkins and T.G. Rossman: Environ. Mutagen. Vol. 8 (1986), p.95.

Google Scholar

[18] M.L. Larramendy, N.C. Popescu and J.A. DiPaolo: Environ. Mutagen. Vol. 3 (1981), p.597.

Google Scholar

[19] E.J. Trosko and C. Chang: Photochem. Photobiol. Vol. 28 (1978), p.157.

Google Scholar

[20] F. D'Agostini and S. De Flora: Cancer Res. Vol. 54 (1994), p.5081.

Google Scholar

[21] A.C. Miller, S. Mog and L. McKinney: Carcinogenes. Vol. 22 (2001), p.115.

Google Scholar