Joining of C/SiC Composite and TC4 Alloy Using 70Ag28Cu2Ti Active Brazing Alloy

Article Preview

Abstract:

C/SiC composite and TC4 alloy were successfully brazed using 70Ag28Cu2Ti (wt. %) as filler metal at 820 °C~920 °C for 5 min ~30 min. The effects of brazing parameters on the microstructures, phase composition, shear strength of the brazed joints were investigated by SEM, XRD. The mechanical performances of the brazed joints were measured by a universal mechanical testing machine. The results show that successful joining of C/SiC composite and TC4 alloy owes to interfacial reactions between the brazing alloy and the parent materials, and resultantly produce TiC, Ti5Si3 and Ti-Cu serial compounds at the interfaces; the interfacial structure of the brazed joint is C/SiC composite / TiC / Ti5Si3 /Ag (s.s) +Cu (s.s) / TiCu2 / Ti3Cu4 / TiCu / Ti2Cu / TC4 from C/SiC composite side to TC4 alloy side; the maximum shear strength of the brazed joint is 53.3 MPa at 860°C for 10min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-171

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. Angus, Aero engine ceramics - the vision, the reality and the progress, Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Eng. 207(1993) 83-96.

DOI: 10.1243/pime_proc_1993_207_252_02

Google Scholar

[2] V.K. Srivastava, Characterization of adhesive bonded lap joints of C/C-SiC composite and Ti–6Al–4V alloy under varying conditions, Int. J. Adhes. Adhes. 23(2003) 59-67.

DOI: 10.1016/s0143-7496(02)00082-9

Google Scholar

[3] J. Dominy, Structural composites in civil gas turbine aero engines, Composites Manufacturing 5(1994) 69-72.

DOI: 10.1016/0956-7143(94)90057-4

Google Scholar

[4] C.T. Chang, Y.C. Du, R.K. Shiue, et al., Infrared brazing of high-strength titanium alloys by Ti-15Cu-15Ni and Ti-15Cu-25Ni filler foils, Mat. Sci. Eng. A. 420(2006)155-164.

DOI: 10.1016/j.msea.2006.01.046

Google Scholar

[5] M.L. Hattali, S. Valette, F. Ropital, et al., Study of SiC-nickel alloy bonding for high temperature applications, J. Eur. Ceram. Soc. 29 (2009) 813-819.

DOI: 10.1016/j.jeurceramsoc.2008.06.035

Google Scholar

[6] C.A. Lewinsohn, M. Singh, Joining of silicon carbide composites for fusion energy applications, J. Nucl. Mater. 283-287(2000)1258-1261.

DOI: 10.1016/s0022-3115(00)00247-6

Google Scholar

[7] M. Singh, Ceramic joining technology, Adv. Mater. Process. 154(1998) 89-90.

Google Scholar

[8] P. Prakash, T. Mohandas, R.P. Dharma, Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints, Scripta Mater. 52 (2005) 1169-1173.

DOI: 10.1016/j.scriptamat.2005.01.034

Google Scholar

[9] H. P. Xiong, X.H. Li, W. Mao, et al., Wetting behavior of Co based active brazing alloys on SiC and the interfacial reaction, Mater. Lett. 57(2003)3417-3421.

DOI: 10.1016/s0167-577x(03)00087-9

Google Scholar

[10] D.L. Ye, J.H. Hu, Handbook of Thermodynamics Data for Inorganic Compounds, second ed., Beijing, (2002).

Google Scholar

[11] M. Singh, T.P. Shpargel, G.N. Morscher, et al., Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites, Mat. Sci. Eng. A. 412 (2005)123-128.

DOI: 10.1016/j.msea.2005.08.179

Google Scholar

[12] R. Arroyave, T.W. Eagar, L. Kaufman, Thermodynamic assessment of the Cu-Ti-Zr system, J. Alloy Compd. 351 (2003)158-170.

DOI: 10.1016/s0925-8388(02)01035-6

Google Scholar