[1]
A. FiIippetti, N.A. Hill, First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite, J. Magn. Magn. Mater. 236 (2001) 176-189.
DOI: 10.1016/s0304-8853(01)00445-0
Google Scholar
[2]
K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders, Advances in Physics 58 (2009) 321-448.
DOI: 10.1080/00018730902920554
Google Scholar
[3]
D.Y. Wang, N.Y. Chan, R.K. Zheng, et al, Multiferroism in orientational engineered (La, Mn) co-substituted BiFeO3 thin films, J. Appl. Phys. 109 (2011) 114105.
DOI: 10.1063/1.3594745
Google Scholar
[4]
V. Fruth, M. Popa, J.M. Calderon-Moreno, et al, Chemical solution deposition and characterization of BiFeO3 thin films, J. Euro. Ceram. Soc. 27 (2007) 4417-4420.
DOI: 10.1016/j.jeurceramsoc.2007.02.175
Google Scholar
[5]
Z.L. Liu, H.R. Liu, G.H. Du, et al, Electric properties of BiFeO3 films deposited on LaNiO3 by sol-gel process, J. Appl. Phys. 100 (2006) 044110.
DOI: 10.1063/1.2335399
Google Scholar
[6]
P. Dash, B.N. Dash, H. Rath, et al, Evolution of phase purity and texture on annealing of BiFeO3 thin film prepared by sol-gel technique, Indian J. Phys. 83 (2009) 485-491.
DOI: 10.1007/s12648-009-0008-0
Google Scholar
[7]
Y.W. Li, J.L. Sun, J. Chen, et al, Preparation and characterization of BiFeO3 thin films grown on LaNiO3-coated SrTiO3 substrate by chemical solution deposition, J. Crystal Growth 285 (2005) 595-599.
DOI: 10.1016/j.jcrysgro.2005.09.036
Google Scholar
[8]
Y. Nakamura, S. Nakashima, M. Okuyama, BiFeO3 Thin Films Prepared by Chemical Solution Deposition with Approaches for Improvement of Ferroelectricity, Ferroelectrics - Material Aspects 22 (2011) 480-496.
DOI: 10.5772/16841
Google Scholar
[9]
V.R. Singh, A. Dixit, A. Garg, et al, Effect of heat treatment on the structure and properties of chemical solution processed multiferroic BiFeO3 thin films, Appl. Phys. A 90 (2008) 197-202.
DOI: 10.1007/s00339-007-4257-5
Google Scholar
[10]
J. Schwarzkopf, R. Fornari, Epitaxial growth of ferroelectric oxide films, Progress in Crystal Growth and Characterization of Materials 52 (2006) 159-212.
DOI: 10.1016/j.pcrysgrow.2006.06.001
Google Scholar
[11]
L.W. Martin, Y. H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Mater. Sci. Eng. R 68 (2010) 89-133.
DOI: 10.1016/j.mser.2010.03.001
Google Scholar
[12]
J. Thery, C. Dubourdieu, T. Baron, et al, MOCVD of BiFeO3 Thin Films on SrTiO3, Chem. Vap. Depos. 13 (2007) 232-238.
DOI: 10.1002/cvde.200606571
Google Scholar
[13]
M.S. Kartavtseva, O.Y. Gorbenko, A.R. Kaul, et al, BiFeO3 thin films prepared by MOCVD, Surf. Coat. Technol. 201 (2007) 9149-9153.
DOI: 10.1016/j.surfcoat.2007.04.099
Google Scholar
[14]
S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications, Appl. Phys. Lett. 87 (2005) 102903.
DOI: 10.1063/1.2041830
Google Scholar
[15]
G.J. Zhang, J.R. Cheng, R. Chen, et al, Preparation of BiFeO3 thin films by pulsed laser deposition method, Trans. Nonferrous Met. SOCC. China 16 (2006) s123-s125.
DOI: 10.1016/s1003-6326(06)60158-1
Google Scholar
[16]
J.K. Chung, W.J. Kim, J.K. Ki, et al, The characteristics of BiFeO3 multiferroic thin films grown by pulsed laser deposition, Integrated Ferroelectrics 87 (2007) 25-32.
DOI: 10.1080/10584580601099132
Google Scholar
[17]
J. Wang, H. Zheng, Ma, S. Prasertchoung, et al, Epitaxial BiFeO3 thin films on Si, Appl. Phys. Lett. 85 (2004) 2574.
DOI: 10.1063/1.1799234
Google Scholar
[18]
K.Y. Yun, D. Ricinschi, T. Kanashima, et al, Enhancement of electrical properties in polycrystalline BiFeO3 thin films, Appl. Phys. Lett. 89 (2006), 192902.
DOI: 10.1063/1.2385859
Google Scholar
[19]
H. Béa, M. Bibes, A. Barthélémy, et al, Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films, Appl. Phys. Lett. 87 (2005), 072508.
DOI: 10.1063/1.2009808
Google Scholar
[20]
P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159-172.
DOI: 10.1016/s0042-207x(99)00189-x
Google Scholar
[21]
H.W. Chang, F.T. Yuan, C.W. Shih, et al, Sputter-prepared BiFeO3 (001) films on L10 FePt(001)/glass substrates, J. Appl. Phys. 111 (2012) 07D918.
DOI: 10.1063/1.3679003
Google Scholar
[22]
W. Ji, K. Yao, Y.C. Liang, Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films, Adv. Mater. 22 (2010) 1763-1766.
DOI: 10.1002/adma.200902985
Google Scholar
[23]
R.R. Das, D.M. Kim, S.H. Baek, et al, Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering, Appl. Phys. Lett. 88 (2006) 242904.
DOI: 10.1063/1.2213347
Google Scholar
[24]
R.Y. Zheng, X.S. Gao, J. Wang, Multiferroic BiFeO3 Thin Films Buffered by a SrRuO3 Layer, J. Am. Ceram. Soc. 91 (2008) 463-466.
Google Scholar
[25]
J.O. Cha, J.S. Ahn, Multiferroic BiFeO3 Thin Films Prepared by Using a Conventional RF Magnetron Sputtering Method, J. Korean Phys. Soc. 54 (2009) 844-848.
DOI: 10.3938/jkps.54.844
Google Scholar
[26]
C. Ternon, J. Thery, T. Baron, et al, Structural properties of films grown by magnetron sputtering of a BiFeO3 target, Thin Solid Films 515 (2006) 481-484.
DOI: 10.1016/j.tsf.2005.12.267
Google Scholar