[1]
Wang, A., J. Zhao, and M.A. Green, 24% efficient silicon solar cells. Applied Physics Letters, 1990. 57(6): pp.602-604.
DOI: 10.1063/1.103610
Google Scholar
[2]
Blakers, A.W., et al., 22. 8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): pp.1363-1365.
Google Scholar
[3]
Schneiderlöchner, E., et al., Laser-fired rear contacts for crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2002. 10(1): pp.29-34.
DOI: 10.1002/pip.422
Google Scholar
[4]
Aberle, A.G. and R. Hezel, Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride. Progress in Photovoltaics: Research and Applications, 1997. 5(1): pp.29-50.
DOI: 10.1002/(sici)1099-159x(199701/02)5:1<29::aid-pip149>3.0.co;2-m
Google Scholar
[5]
Koschier, L.M. and S.R. Wenham, Improved open circuit voltage using metal mediated epitaxial growth in thyristor structure solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8(5): pp.489-501.
DOI: 10.1002/1099-159x(200009/10)8:5<489::aid-pip342>3.0.co;2-8
Google Scholar
[6]
Claudio, G., et al. Passivation of laser grooved buried contacts (LGBC) solar cells with silicon oxide or silicon nitride grown by a remote sputtering deposition system. in Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE. (2008).
DOI: 10.1109/pvsc.2008.4922436
Google Scholar
[7]
Swanson, R.M., et al., Point-contact silicon solar cells. Electron Devices, IEEE Transactions on, 1984. 31(5): pp.661-664.
DOI: 10.1109/t-ed.1984.21586
Google Scholar
[8]
Granek, F., et al., Enhanced lateral current transport via the front N+ diffused layer of n-type high-efficiency back-junction back-contact silicon solar cells. Progress in Photovoltaics: Research and Applications, 2009. 17(1): pp.47-56.
DOI: 10.1002/pip.862
Google Scholar
[9]
Ho, A.W.Y. and S.R. Wenham, Buried contact solar cells with innovative rear localised contacts. Progress in Photovoltaics: Research and Applications, 2004. 12(4): pp.297-308.
DOI: 10.1002/pip.538
Google Scholar
[10]
Ho, A.W.Y. and S.R. Wenham, Fabrication of silicon solar cells with rear pinhole contacts. Solar Energy Materials and Solar Cells, 2007. 91(13): pp.1234-1242.
DOI: 10.1016/j.solmat.2007.04.011
Google Scholar
[11]
Nast, O., et al., Aluminium-induced crystallisation of silicon on glass for thin-film solar cells. Solar Energy Materials and Solar Cells, 2001. 65(1-4): pp.385-392.
DOI: 10.1016/s0927-0248(00)00117-3
Google Scholar
[12]
Klein, J., et al., Aluminium-induced crystallisation of amorphous silicon: influence of the aluminium layer on the process. Thin Solid Films, 2004. 451-452(0): pp.481-484.
DOI: 10.1016/j.tsf.2003.11.009
Google Scholar
[13]
He, D., J.Y. Wang, and E.J. Mittemeijer, Origins of interdiffusion, crystallization and layer exchange in crystalline Al/amorphous Si layer systems. Applied Surface Science, 2006. 252(15): pp.5470-5473.
DOI: 10.1016/j.apsusc.2005.12.014
Google Scholar
[14]
Schneider, J., et al., Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles. Thin Solid Films, 2005. 487(1-2): pp.107-112.
DOI: 10.1016/j.tsf.2005.01.046
Google Scholar
[15]
D.K. Schroder, ed. Semiconductor Material and Device Characterization. ed. 2nd. 1998, John Wiley and Sons.
Google Scholar
[16]
Green, M.A., Effects of pinholes, oxide traps, and surface states on MIS solar cells. Applied Physics Letters, 1978. 33(2): pp.178-180.
DOI: 10.1063/1.90299
Google Scholar
[17]
Widenborg, P.I. and A.G. Aberle, Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates. Journal of Crystal Growth, 2002. 242(3-4): pp.270-282.
DOI: 10.1016/s0022-0248(02)01388-x
Google Scholar
[18]
He, D., J.Y. Wang, and E.J. Mittemeijer, Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: microstructural and thermodynamic analysis of layer exchange. Applied Physics A: Materials Science & Processing, 2005. 80(3): pp.501-509.
DOI: 10.1007/s00339-004-3053-8
Google Scholar
[19]
Narasimha, S., A. Rohatgi, and A.W. Weeber, An optimized rapid aluminum back surface field technique for silicon solar cells. Electron Devices, IEEE Transactions on, 1999. 46(7): pp.1363-1370.
DOI: 10.1109/16.772477
Google Scholar
[20]
Cullity, B.D., ed. Elements of X-ray Diffraction. 1978, Addison-Wesley, Reading, MA.
Google Scholar
[21]
H. B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, 1977. 48, 4729.
Google Scholar