Aluminum-Induced Crystallization of p+ Silicon Pinholes for the Formation of Rear Passivation Contact in Solar Cell

Abstract:

Article Preview

Formation of nano-crystalline p+ silicon (Si) in pinholes through a silicon dioxide layer was achieved by pinning of aluminum through the thin silicon dioxide (SiO2) layer. In addition to opening holes of SiO2 layer by aluminum (Al) pining, amorphous silicon (a-Si) was subsequent deposited on the Al layer and another heated at low temperature (500°C) to allow solid- phase epitaxial growth of p+ Si in the pinholes due to the Al induced layer exchange process. The poly-crystalline p+ Si obtains lower effective surface recombination than the Al back surface field (BSF). The technique demonstrated to result in ohmic contacts with low contact resistance. The evaluation of Al-induced crystallization of a-Si in a-Si/Al bilayer was studied by X-ray diffraction. In this paper, the influence of a-Si/Al thickness ratio on the specific conductivity value and crystalline grain size of the p+ Si thin film is discussed. The obtained results are helpful for a further design of the rear passivation contact in solar cell.

Info:

Periodical:

Edited by:

Sean Li, Thiam Teck Tan and Danyang Wang

Pages:

31-40

Citation:

T. Fangsuwannarak et al., "Aluminum-Induced Crystallization of p+ Silicon Pinholes for the Formation of Rear Passivation Contact in Solar Cell", Key Engineering Materials, Vol. 547, pp. 31-40, 2013

Online since:

April 2013

Export:

Price:

$41.00

[1] Wang, A., J. Zhao, and M.A. Green, 24% efficient silicon solar cells. Applied Physics Letters, 1990. 57(6): pp.602-604.

[2] Blakers, A.W., et al., 22. 8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): pp.1363-1365.

[3] Schneiderlöchner, E., et al., Laser-fired rear contacts for crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2002. 10(1): pp.29-34.

DOI: https://doi.org/10.1002/pip.422

[4] Aberle, A.G. and R. Hezel, Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride. Progress in Photovoltaics: Research and Applications, 1997. 5(1): pp.29-50.

DOI: https://doi.org/10.1002/(sici)1099-159x(199701/02)5:1<29::aid-pip149>3.0.co;2-m

[5] Koschier, L.M. and S.R. Wenham, Improved open circuit voltage using metal mediated epitaxial growth in thyristor structure solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8(5): pp.489-501.

DOI: https://doi.org/10.1002/1099-159x(200009/10)8:5<489::aid-pip342>3.0.co;2-8

[6] Claudio, G., et al. Passivation of laser grooved buried contacts (LGBC) solar cells with silicon oxide or silicon nitride grown by a remote sputtering deposition system. in Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE. (2008).

DOI: https://doi.org/10.1109/pvsc.2008.4922436

[7] Swanson, R.M., et al., Point-contact silicon solar cells. Electron Devices, IEEE Transactions on, 1984. 31(5): pp.661-664.

[8] Granek, F., et al., Enhanced lateral current transport via the front N+ diffused layer of n-type high-efficiency back-junction back-contact silicon solar cells. Progress in Photovoltaics: Research and Applications, 2009. 17(1): pp.47-56.

DOI: https://doi.org/10.1002/pip.862

[9] Ho, A.W.Y. and S.R. Wenham, Buried contact solar cells with innovative rear localised contacts. Progress in Photovoltaics: Research and Applications, 2004. 12(4): pp.297-308.

DOI: https://doi.org/10.1002/pip.538

[10] Ho, A.W.Y. and S.R. Wenham, Fabrication of silicon solar cells with rear pinhole contacts. Solar Energy Materials and Solar Cells, 2007. 91(13): pp.1234-1242.

DOI: https://doi.org/10.1016/j.solmat.2007.04.011

[11] Nast, O., et al., Aluminium-induced crystallisation of silicon on glass for thin-film solar cells. Solar Energy Materials and Solar Cells, 2001. 65(1-4): pp.385-392.

DOI: https://doi.org/10.1016/s0927-0248(00)00117-3

[12] Klein, J., et al., Aluminium-induced crystallisation of amorphous silicon: influence of the aluminium layer on the process. Thin Solid Films, 2004. 451-452(0): pp.481-484.

DOI: https://doi.org/10.1016/j.tsf.2003.11.009

[13] He, D., J.Y. Wang, and E.J. Mittemeijer, Origins of interdiffusion, crystallization and layer exchange in crystalline Al/amorphous Si layer systems. Applied Surface Science, 2006. 252(15): pp.5470-5473.

DOI: https://doi.org/10.1016/j.apsusc.2005.12.014

[14] Schneider, J., et al., Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles. Thin Solid Films, 2005. 487(1-2): pp.107-112.

DOI: https://doi.org/10.1016/j.tsf.2005.01.046

[15] D.K. Schroder, ed. Semiconductor Material and Device Characterization. ed. 2nd. 1998, John Wiley and Sons.

[16] Green, M.A., Effects of pinholes, oxide traps, and surface states on MIS solar cells. Applied Physics Letters, 1978. 33(2): pp.178-180.

DOI: https://doi.org/10.1063/1.90299

[17] Widenborg, P.I. and A.G. Aberle, Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates. Journal of Crystal Growth, 2002. 242(3-4): pp.270-282.

DOI: https://doi.org/10.1016/s0022-0248(02)01388-x

[18] He, D., J.Y. Wang, and E.J. Mittemeijer, Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: microstructural and thermodynamic analysis of layer exchange. Applied Physics A: Materials Science & Processing, 2005. 80(3): pp.501-509.

DOI: https://doi.org/10.1007/s00339-004-3053-8

[19] Narasimha, S., A. Rohatgi, and A.W. Weeber, An optimized rapid aluminum back surface field technique for silicon solar cells. Electron Devices, IEEE Transactions on, 1999. 46(7): pp.1363-1370.

DOI: https://doi.org/10.1109/16.772477

[20] Cullity, B.D., ed. Elements of X-ray Diffraction. 1978, Addison-Wesley, Reading, MA.

[21] H. B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, 1977. 48, 4729.