Key Engineering Materials Vol. 549

Paper Title Page

Abstract: This paper focuses on the development of a new type of roll bending machine. Our primary aim was to build a machine that could form ultra-high-strength steels (UHS) with smaller inner radii than those achieved by traditional bending methods. One of the main planning principles was modular construction, so a length of a bending line could be easily selected or changed later by the user without major changes to the basic construction of the machine. In contrast, in traditional roll forming, the blank does not move during the forming process, so the accuracy of the profile can be better controlled. Different kinds of cut to size-open profiles can be produced by this machine, which utilizes and combines bending and rolling techniques. In the initial stages of the project, the needs of smaller companies that do short-run productions are taken into account. First, the prototype is designed mainly for research use; moreover, it is important that the properties of the machine are multifunctional. In addition, forming can be done in several ways by this machine. In this paper, there is shown creation of a machine, designing of construction and manufacturing steps of the whole machine including assembling. Also detailed description of the various functional components and the operating principle is presented. The results of the forming tests are also presented.
76
Abstract: This paper investigates a new tool, where the forming tip is constructed from acetal. The acetal tip is investigated because it is self-lubricating and more compliant than traditional SPIF tools. This work characterizes the topography of surfaces created by forming aluminum with both the acetal-tipped tool and a carbide tool. When the parts are compared visually, the parts formed with the acetal tool maintain the appearance of the unformed sheet metal. The surfaces of the parts are measured using an Olympus LEXT OLS4000, a vertical scanning laser confocal microscope. Surface height as a function of lateral position on both sides of the parts (contact and free surface) is measured. These measurements are analyzed quantitatively using areal surface texture parameters and qualitatively compared with micrographs of the surfaces. Comparisons of the surfaces that are in contact with the tool reveal that the surfaces produced with the acetal tool are rougher but more isotropic than those produced using the carbide tool. The surfaces produced by the carbide tool have a more anisotropic appearance, which is created by the tool as it steps down to form the part. The benefit of using the acetal tool rather than the carbide tool is the absence of the anisotropy caused by tool step down. The free surfaces produced by both tools are much rougher than the surfaces that contact the forming tools, since the tool does not affect roughness of the free surfaces.
84
Abstract: In recent years, the requirements on the complicated deep-drawn parts with the high dimension precision are increasingly. As the major defect, the concave wall feature which commonly encounter in the complicated deep-drawn parts of the difficult-to-deep draw material is focused. In this research, the effects of draw-bending characteristics on concave wall feature during deep-drawing process are clearly identified. The mechanism of concave wall feature related to the draw-bending characteristic was investigated and clearly identified by using the finite element method (FEM) and the experiments were also performed to validate the FEM-simulation results. On the basis of stress distribution, the effects of draw-bending characteristics on the concave wall feature could be clearly identified via the changes of stress distributions on the wall, convex feature and spring-go feature on the bottom surface, and spring-back feature on the top surface. However, comparing with U-draw bending model, the effects of draw-bending characteristics was decreased and the concave wall feature in the case of deep-drawing model was smaller than that in the case of U-draw bending model. The experiments were carried out in both cases of the deep-drawing and U-draw bending models to validate the FEM-simulation results. The FEM-simulation results showed a good agreement with the experimental results with reference to the distribution of material thickness.
92
Abstract: The U-bending process is a common sheet-metal forming process widely employed to fabricate sheet parts like channels, beams, and frames of various sizes applied in almost all industrial fields. In recent years, the precision requirements are increased on the U-bent parts. To achieve these requirements, in this study, the effects of part geometry on the spring-back/spring-go feature including work piece length, U-channel width, punch and die radii, and work piece thickness, were investigated by using the finite element method (FEM) and laboratory experiments. The FEM simulation results clearly revealed the influence of part geometry on spring-back/spring-go feature via the changes of stress distribution analyses on the bending allowance zone, the bottom of bent part, and the U-leg of bent part. Specifically, the part geometry affected on the bending characteristic on the bending allowance zone, as well as it affected on the spring-back feature. In addition, the part geometry also affected on the formation of reversed bending characteristic on the bottom and U-leg of bent parts, as well as it affected on the spring-go feature. The bending angle could be achieved by compensating these bending and reversed bending characteristics. Therefore, to meet the required bending angle, the suitable design of part geometry was strongly considered to maintain the balancing of the bending and reversed bending characteristics. The laboratory experiments were carried out to validate the accuracy of the FEM simulation results. The FEM simulation results showed good agreement with the experimental results with reference to the bending angle and bending force.
100
Abstract: To configure the indirect hot stamping process, a finite-element-based prediction of the parts geometry and mechanical properties is required. In case of indirect hot stamping, inhomogeneous cooling schedules cause different phase transformation points and products. The volume expansion caused by phase transformation of fcc into bcc leads to transformation induced stresses that are important for the calculation of overall stresses in press hardened components. To calculate theses stresses correctly, it is necessary to study the kinetics of phase transformation in consideration of the cooling path of an indirect hot stamping process. Dilatometer tests are employed to obtain the kinetics of phase transformation is determined in dilatometer tests. These results are used to identify the parameters for the phase transformation models implemented in the material model *MAT_244 [ that is implemented in the finite-element-code LS-DYNA [. In this context the material model parameters are identified by using evolutionary optimization strategies. Based on the identified parameters the predictive quality of the implemented phase transformation models will be studied in order to improve their prediction accuracy for the indirect hot stamping process.
108
Abstract: Carcass production of flexible offshore oil and gas pipes implies winding and interlocking of a roll formed stainless steel profile around a mandrel in a spiral shape. The location of the dividing point between the left and right half of the s-shaped profile in the finished carcass is very important as it directly influences carcass flexibility. The target location of the dividing point can be difficult to achieve since undesired degrees of freedom in the winding stage allows the profile to change geometry. The present work investigates this issue by performing production tests of a single carcass profile size on three mandrel sizes showing a size effect to be evident; smaller mandrel size increases a shift of the dividing point during initial mandrel contact in the winding stage. The cause is high strains in the open profile, which are minimized by the material moving closer to profile neutral plane. Other parameters such as profile entry angle on the mandrel and spiral pitch are likely to have significant importance. Proper dividing point position is shown to be obtainable by adjusting the profile in the roll forming stage. The profile rolling is successfully modeled by Finite Element Analysis (FEA), whereas a simplified FE-model of the subsequent winding operation shows that full interlock modeling is required for proper prediction of profile deformation.
117
Abstract: Holograms are industrially used as decorative design elements to increase the value of products. As they are hard to copy, holograms are also used for brand protection and product identification. The state-of-the-art is to emboss holograms in the surface of polymeric foils and to apply them to products by adhesive bonding. Examples are holograms on credit cards, banknotes or identification cards. In this paper, a new method to emboss holograms in the surface of sheet metals is presented. By this, parts made of sheet metal such as decorative interior parts of cars, battery housings or packaging of cosmetic products can be equipped with holograms during their production process. Hence, adhesive bonding and the required additional handling operations are not necessary. An embossing tool and the results of experimental hologram embossing are described. Aluminium Al99.9, aluminium-magnesium alloy AW-5505, copper and zinc-coated deep drawing steel DC05 were used as sheet metals to be embossed. Furthermore, a new method and a device to produce master holograms are presented. Master holograms are required to produce embossing dies with the hologram on its surface (referred to as shim). The device is based on a laser light source and a spatial light modulator (SLM). With help of the SLM, simultaneous transfer of 1920 x 1080 pixels of a Computer Generated Holograms (CGH) topography to a plate coated with photoresist is possible. Compared to todays industrial mastering of holograms which is done pixel by pixel, the time required for the process is much shorter. In addition, investment costs are lower compared to currently used electron-beam-lithography devices.
125
Abstract: nnovative ultra high-strength steels have excellent mechanical properties which commonly relate to the materials martensitic microstructure. As thermal heat treatments are state-of-the-art for obtaining the desired microstructure, innovative thermo-mechanical treatments are likely to give rise to even better material qualities. This article highlights various aspects of innovative thermo-mechanical hardening strategies for the processing of ultra high-strength steels, involving both press hardening and friction spinning operations.
133
Abstract: This paper reports the results obtained during a research project funded by the Italian Government and involving several Italian Universities (PRIN INTEMA). The activities have been focused on side impact bar manufacturing by means of Tube Hydroforming process (THF). Punch movement paths and fluid pressure curve were optimized by means of FEM software (LS-DYNA) to guarantee tube sealing and material feeding during the tube deformation. The side impact bar geometry was optimized till reaching the shape guaranteeing the obtainment of safe parts with the best compromise in terms of final part geometry and thickness reduction. Different fluid pressure and punch movement paths were investigated. Once accomplished all the simulations and identified the best working solution, experimental tests were performed setting the process parameters according to the values defined during the simulation phase. Good agreement between FEM and experimental results were highlighted.
141
Abstract: The industrial application of incremental sheet metal forming is still limited by certain constraints, e.g. low geometrical accuracy and geometrical complexity. In order to overcome these constraints, this paper presents two approaches which have been carried out within the research project Development of a robot-based dieless incremental sheet metal forming process funded by the German Research Foundation (DFG). The first approach increases the geometrical accuracy by adding an addendum stabilization surface. As neither a partial nor a full die is used in this universal concept, there is a larger influence of the free compliant sheet area surrounding the formed part of the geometry. Thus the sheet shifts away from the forming tool more easily, which often results in a less accurate forming. The addendum stabilization surface reinforces this free sheet area. Experiments have proven this to be as good as a partial die. Especially the subsequent deformation resulting from the interaction of differently shaped elements causes geometrical deviations which are limiting the scope of formable parts. The second approach is based on the subsequent forming of elements belonging to the original geometry, which helps to increase the geometrical accuracy as well as the geometrical complexity. Thus the basic geometry is formed in a first step. Afterwards, further elements are formed subsequently, while the adjacent areas are supported by a peripheral supporting tool which prevents their deformation.
149

Showing 11 to 20 of 70 Paper Titles