[1]
T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics 230 (2011) 2391–2405
DOI: 10.1016/j.jcp.2010.11.041
Google Scholar
[2]
Y. Mesri, W. Zerguine, H. Digonnet, S. Luisa, T. Coupez, Dynamic parallel mesh adaption for three dimensional unstructured meshes: application to interface tracking, International Meshing Roundtable (2008).
DOI: 10.1007/978-3-540-87921-3_12
Google Scholar
[3]
O. Basset, Simulation numérique d'écoulements multi-fluides sur grille de calcul. PhD Thesis, Ecole Nationale des Mines de Paris (2006).
Google Scholar
[4]
A. Brooks ans T. Hughes, Streamline upwind Petrov Galerkin formulations for convection dominated flow with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199-259 (1982).
DOI: 10.1016/0045-7825(82)90071-8
Google Scholar
[5]
L. Ville, L. Silva and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids (2010).
DOI: 10.1002/fld.2259
Google Scholar
[6]
L. Silva, R. Lanrivain, W. Zerguine, A. Rodriguez-Villa and T. Coupez, Two-phase model of liquid-liquid interactions with interface capturing: Application to water assisted injection molding, Materials Processing and Design, Modeling, Simulation and Applications, NUMIFORM '07: 9th International Conference on Numerical Methods in Industrial Forming Processes, Porto : Portugal (2007)
DOI: 10.1063/1.2740838
Google Scholar
[7]
T. Coupez And E. Hachem, Adaptive anisotropic meshing for incompressible navier stokes using a VMS solver with boundary layer, 5th International Conference on Adaptive Modeling and Simulation, ADMOS 2011, Paris :France (2011).
Google Scholar