[1]
S. Olovsjö, P. Hammersberg, P. Avdovic, J.-E. Ståhl, L. Nyborg, Methodology for evaluating effects of material characteristics on machinability—theory and statistics-based modelling applied on Alloy 718, The International Journal of Advanced Manufacturing Technology 59 (2012) 55-66.
DOI: 10.1007/s00170-011-3503-3
Google Scholar
[2]
E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability—a review, Journal of Materials Processing Technology 68 (1997) 262-274.
DOI: 10.1016/s0924-0136(96)00030-1
Google Scholar
[3]
J.I. Hughes, A.R.C. Sharman, K. Ridgway, The Effect of Cutting Tool Material and Edge Geometry on Tool Life and Workpiece Surface Integrity, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (2006) 93-107.
DOI: 10.1243/095440506x78192
Google Scholar
[4]
C.F. Wyen, K. Wegener, Influence of cutting edge radius on cutting forces in machining titanium, CIRP Annals - Manufacturing Technology 59 (2010) 93-96.
DOI: 10.1016/j.cirp.2010.03.056
Google Scholar
[5]
A. Jawaid, C.H. Che-Haron, A. Abdullah, Tool wear characteristics in turning of titanium alloy Ti-6246, Journal of Materials Processing Technology 92–93 (1999) 329-334.
DOI: 10.1016/s0924-0136(99)00246-0
Google Scholar
[6]
E.O. Ezugwu, R.B. Da Silva, J. Bonney, Á.R. Machado, Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies, International Journal of Machine Tools and Manufacture 45 (2005) 1009-1014.
DOI: 10.1016/j.ijmachtools.2004.11.027
Google Scholar
[7]
T. Özel, M. Sima, A.K. Srivastava, B. Kaftanoglu, Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations, CIRP Annals - Manufacturing Technology 59 (2010) 77-82.
DOI: 10.1016/j.cirp.2010.03.055
Google Scholar
[8]
A. Jawaid, S. Sharif, S. Koksal, Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy, Journal of Materials Processing Technology 99 (2000) 266-274.
DOI: 10.1016/s0924-0136(99)00438-0
Google Scholar
[9]
S. Jaffery, P. Mativenga, Wear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings, The International Journal of Advanced Manufacturing Technology 58 (2012) 479-493.
DOI: 10.1007/s00170-011-3427-y
Google Scholar
[10]
G.A. Ibrahim, C.H. Che Haron, J.A. Ghani, Surface integrity of Ti-6Al-4V ELI when machined using coated carbide tools under dry cutting condition, International Journal of Mechanical and Materials Engineering 4 (2009) 191-196.
DOI: 10.4028/www.scientific.net/amr.264-265.1050
Google Scholar
[11]
A.K. Srivastava, J. Iverson, An Experimental Investigation Into the High Speed Turning of Ti-6Al-4V Titanium Alloy, ASME Conference Proceedings 2010 (2010) 401-408.
DOI: 10.1115/msec2010-34205
Google Scholar
[12]
D. Mohan Lal, S. Renganarayanan, A. Kalanidhi, Cryogenic treatment to augment wear resistance of tool and die steels, Cryogenics 41 (2001) 149-155.
DOI: 10.1016/s0011-2275(01)00065-0
Google Scholar
[13]
S. Gill, H. Singh, R. Singh, J. Singh, Cryoprocessing of cutting tool materials—a review, The International Journal of Advanced Manufacturing Technology 48 (2010) 175-192.
DOI: 10.1007/s00170-009-2263-9
Google Scholar
[14]
S.S. Gill, J. Singh, H. Singh, R. Singh, Investigation on wear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning, International Journal of Machine Tools and Manufacture 51 (2011) 25-33.
DOI: 10.1016/j.ijmachtools.2010.10.003
Google Scholar
[15]
A. Yong, K. Seah, M. Rahman, Performance of cryogenically treated tungsten carbide tools in milling operations, The International Journal of Advanced Manufacturing Technology 32 (2007) 638-643.
DOI: 10.1007/s00170-005-0379-0
Google Scholar
[16]
A.Y.L. Yong, K.H.W. Seah, M. Rahman, Performance evaluation of cryogenically treated tungsten carbide tools in turning, International Journal of Machine Tools and Manufacture 46 (2006) 2051-2056.
DOI: 10.1016/j.ijmachtools.2006.01.002
Google Scholar
[17]
S.S. Gill, R. Singh, H. Singh, J. Singh, Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions, International Journal of Machine Tools and Manufacture 49 (2009) 256-260.
DOI: 10.1016/j.ijmachtools.2008.11.001
Google Scholar
[18]
H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hegde, R.M. Penich, A new class of high performance PVD coatings for carbide cutting tools, Surface and Coatings Technology 139 (2001) 25-34.
DOI: 10.1016/s0257-8972(00)01080-x
Google Scholar
[19]
A. Hosokawa, K. Shimamura, T. Ueda, Cutting characteristics of PVD-coated tools deposited by Unbalanced Magnetron Sputtering method, CIRP Annals - Manufacturing Technology 61 (2012) 95-98.
DOI: 10.1016/j.cirp.2012.03.010
Google Scholar
[20]
D.C. Montgomery, Design and analysis of experiments, 5th ed., John Wiley, New York, 2001.
Google Scholar
[21]
J.P. Holman, Experimental methods for engineers, 7th ed., McGraw-Hill, Boston, 2001.
Google Scholar
[22]
M. Santochi, F. Giusti, Tecnologia meccanica e studi di fabbricazione, CEA, 2000.
Google Scholar
[23]
N.R. Draper, H. Smith, Applied regression analysis, 3rd ed., Wiley, New York, 1998.
Google Scholar