[1]
J. Kantola, A. Järvenpää, M. Jaskari, K. Mäntyjärvi & J.A. Karjalainen. 2012. Influence of plasma, laser and waterjet cutting on fatigue life of austenitic-ferritic stainless steel. XVI International Colloquium Mechanical Fatigue of Metals. Brno, Czech Repuplic.
DOI: 10.4028/www.scientific.net/kem.554-557.1967
Google Scholar
[2]
D.J. Thomas. 2011. Optimising plasma cut-edge properties for improving the durability of bridge structures. International Journal of Steel Structures, Vol. 11, No. 4. pp.481-493.
DOI: 10.1007/s13296-011-4007-6
Google Scholar
[3]
D.J. Thomas. 2011. The influence of the laser and plasma traverse cutting speed process parameter on the cut-edge characteristics and durability of Yellow Goods vehicle applications. Journal of Manufacturing Processes, Vol. 13. pp.120-132.
DOI: 10.1016/j.jmapro.2011.02.002
Google Scholar
[4]
K. Mäntyjärvi, A. Väisänen & J.A. Karjalainen. 2009.Cutting method influence on the fatigue resistance of ultra-high-strength steel. International Journal of Material Forming, Vol. 2, Issue 1. pp.547-550.
DOI: 10.1007/s12289-009-0583-9
Google Scholar
[5]
J-O. Sperle. Influence of parent metal strength on the fatigue strength of parent material with machined and thermally cut edges, IIW Document XIII-2174-07. International Institute of Welding. Swedish delegation. 27 p.
DOI: 10.1007/bf03266656
Google Scholar
[6]
D.J. Thomas, M. Whittaker, G. Bright & Y. Gao. 2011. The influence of the mechanical and CO2 laser cut-edge characteristics on the fatigue life performance of high strength automotive steels. Elsevier. Journal of Materials Processing Technology. Vol. 211. pp.263-274.
DOI: 10.1016/j.jmatprotec.2010.09.018
Google Scholar
[7]
F. Meurling, A. Melander, J. Linder. In: G. Marquis, J. Solin, editors. Comparison of the fatigue characteristics of punched and laser cut stainless steel sheets, Fatigue design 1998. Espoo, Finland: VTT Publication; 1998. pp.351-72.
Google Scholar
[8]
D. J. Thomas. 2009. Characteristics of abrasive waterjet cut-edges and the affect on formability and fatigue performance of high strength steels. Elsevier. Journal of Manufacturing Processes. Vol. 11. pp.97-105.
DOI: 10.1016/j.jmapro.2009.12.001
Google Scholar
[9]
Outokumpu Stainless Oy. 2011. Inspection Certificate 3.1, SFS-EN 10204 3.1, Certificate No. 565579/001. Tornio, Finland.
Google Scholar
[10]
BS 7270:2006. Metallic materials – Constant amplitude strain controlled axial fatigue – Method of test. 2nd edition. London. British Standard Institution. 24 p. ISBN 0 580 49023 8.
DOI: 10.3403/30019840
Google Scholar
[11]
F. Kandil. 1998. Measurement Good Practice Guide No. 1 – Measurement of Bending in Uniaxial Low Cycle Fatigue Testing. Teddington, United Kingdom. Centre for Materials Measurement and Technology, National Physics Laboratory. 48 p. ISSN 1368-6550.
Google Scholar