[1]
J. Lemaitre, "Local approach of fracture," Engineering Fracture Mechanics, vol. 25, no. 5-6, pp.523-537, 1986.
DOI: 10.1016/0013-7944(86)90021-4
Google Scholar
[2]
J. Lemaitre and R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Berlin: Springer, 2005.
Google Scholar
[3]
L. Xue, "Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading," International Journal of Solids and Structures, vol. 44, no. 16, pp.5163-5181, 2007.
DOI: 10.1016/j.ijsolstr.2006.12.026
Google Scholar
[4]
G. R. Johnson and W. H. Cook, "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures," Engineering Fracture Mechanics, vol. 21, no. 1, pp.31-48, 1985.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[5]
M. Wilkins, R. Streit, and J. Reaugh, "Cumulative-strain-damage model of ductile fracture: Simulation and prediction of engineering fracture tests," Technical Report UCRL-53058, Lawrence Livermore National Laboratory, 1980.
DOI: 10.2172/6628920
Google Scholar
[6]
M. Cockcroft and D. J. Latham, Ductility and workability of metals, vol. 96. 1 Carlton House Terrace, London SW1Y 5DB, England: Inst Materials, 1968.
Google Scholar
[7]
M. Oyane, T. Sato, K. Okimoto, and S. Shima, "Criteria for ductile fracture and their applications," Journal of Mechanical Working Technology, vol. 4, no. 1, pp.65-81, 1980.[8] L. Kachanov, "On creep rupture time," Proc. Acad. Sci. USSR Div. Eng. Sci., vol. 8, p.2631, 1958.
DOI: 10.1016/0378-3804(80)90006-6
Google Scholar
[9]
J. Chaboche, "Anisotropic creep damage in the framework of continuum damage mechanics," Nuclear Engineering and Design, vol. 79, no. 3, pp.309-319, 1984.
DOI: 10.1016/0029-5493(84)90046-3
Google Scholar
[10]
P. O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin, "An enhanced lemaitre model formulation for materials processing damage computation," International Journal of Material Forming, vol. 4, pp.299-315, 2011.
DOI: 10.1007/s12289-010-0996-5
Google Scholar
[11]
A. L. Gurson, "Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part IYield Criteria and Flow Rules for Porous Ductile Media," Journal of Engineering Materials and Technology, vol. 99, no. 1, pp.2-15, 1977.
DOI: 10.1115/1.3443401
Google Scholar
[12]
A. Needleman and V. Tvergaard, "An analysis of ductile rupture in notched bars," Journal of the Mechanics and Physics of Solids, vol. 32, no. 6, pp.461-490, 1984.
DOI: 10.1016/0022-5096(84)90031-0
Google Scholar
[13]
G. Rousselier, "Ductile fracture models and their potential in local approach of fracture," Nuclear Engineering and Design, vol. 105, no. 1, pp.97-111, 1987.
DOI: 10.1016/0029-5493(87)90234-2
Google Scholar
[14]
L. Xue and T. Wierzbicki, "Numerical simulation of fracture mode transition in ductile plates," International Journal of Solids and Structures, vol. 46, no. 6, pp.1423-1435, 2009.
DOI: 10.1016/j.ijsolstr.2008.11.009
Google Scholar
[15]
K. Nahshon and J. Hutchinson, "Modification of the Gurson Model for shear failure," European Journal of Mechanics - A/Solids, vol. 27, no. 1, pp.1-17, 2008.
DOI: 10.1016/j.euromechsol.2007.08.002
Google Scholar
[16]
Y. Bai and T. Wierzbicki, "Application of extended Mohr-Coulomb criterion to ductile fracture," International Journal of Fracture, vol. 161, no. 1, pp.1-20, 2010.
DOI: 10.1007/s10704-009-9422-8
Google Scholar
[17]
Y. Bai and T. Wierzbicki, "A new model of metal plasticity and fracture with pressure and Lode dependence," International Journal of Plasticity, vol. 24, no. 6, pp.1071-1096, 2008.
DOI: 10.1016/j.ijplas.2007.09.004
Google Scholar
[18]
P. W. Bridgman, Studies in large plastic flow and fracture. Cambridge, Massachusetts: Harvard University Press, 1952.
Google Scholar
[19]
Y. Bao and T. Wierzbicki, "On the cut-off value of negative triaxiality for fracture," Engineering Fracture Mechanics, vol. 72, no. 7, pp.1049-1069, 2005.
DOI: 10.1016/j.engfracmech.2004.07.011
Google Scholar
[20]
W. Lode, "Versuche ¨uber den einflußder mittleren hauptspannung auf die fließgrenze," Zeitschrift f¨ur angewandte mathematik und mechanik, vol. 5, pp.142-144, 1925.
DOI: 10.1002/zamm.19250050215
Google Scholar
[21]
T. Coupez, H. Digonnet, and R. Ducloux, "Parallel meshing and remeshing," Applied Mathematical Modelling, vol. 25, no. 2, pp.153-175, 2000.
DOI: 10.1016/s0307-904x(00)00045-7
Google Scholar
[22]
D. Arnold, F. Brezzi, and M. Fortin, "A stable finite element for the stokes equations," Calcolo, vol. 21, pp.337-344, 1984.
DOI: 10.1007/bf02576171
Google Scholar
[23]
H.-P. P. Schwefel, Evolution and Optimum Seeking: The Sixth Generation. New York, NY, USA: John Wiley & Sons, Inc., 1993.
Google Scholar
[24]
H. G. Beyer, The theory of evolution strategies. Springer, 2001.
Google Scholar
[25]
H. Swift, "Plastic instability under plane stress," Journal of the Mechanics and Physics of Solids, vol. 1, no. 1, pp.1-18, 1952.
Google Scholar
[26]
P. Ludwik, Elemente Der Technologischen Mechanik. Berlin: J. Springer, 1996.[27] E. Voce, "A practical strain-hardening function," Metallurgica, vol. 51, pp.219-226, 1955.
Google Scholar
[28]
M. Jir´asek, "Nonlocal models for damage and fracture: Comparison of approaches," International Journal of Solids and Structures, vol. 35, no. 3132, pp.4133-4145, 1998.
DOI: 10.1016/s0020-7683(97)00306-5
Google Scholar
[29]
S. Fayolle, Mod´elisation num´erique de la mise en forme et de la tenue m´ecanique des assemblages par d´eformation plastique : application au rivetage auto-poinc¸onneur. PhD thesis, Ecole nationale sup´erieure des Mines de Paris, 11 2008.
Google Scholar
[30]
R. H. J. Peerlings, R. D. Borst, W. A. M. Brekelmans, and J. H. P. D. Vree, "Gradient enhanced damage for quasi-brittle materials," International Journal for Numerical Methods in Engineering, vol. 39, pp.3391-3403, 1996.
DOI: 10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d
Google Scholar
[31]
R. H. J. Peerlings, M. G. D. Geers, R. de Borst, and W. A. M. Brekelmans, "A critical comparison of nonlocal and gradient-enhanced softening continua," International Journal of Solids and Structures, vol. 38, no. 44-45, pp.7723-7746, 2001.
DOI: 10.1016/s0020-7683(01)00087-7
Google Scholar
[32]
R. A. Engelen, M. G. Geers, and F. P. Baaijens, "Nonlocal implicit gradient-enhanced elastoplasticity for the modelling of softening behaviour," International Journal of Plasticity, vol. 19, no. 4, pp.403-433, 2003.
DOI: 10.1016/s0749-6419(01)00042-0
Google Scholar
[33]
N. V. Reddy, P. M. Dixit, and G. K. Lal, "Central bursting and optimal die profile for axisymmetric extrusion," Journal of Manufacturing Science and Engineering, vol. 118, no. 4, pp.579-584, 1996.
DOI: 10.1115/1.2831070
Google Scholar
[34]
N. V. Reddy, P. M. Dixit, and G. K. Lal, "Ductile fracture criteria and its prediction in axisymmetric drawing," International Journal of Machine Tools and Manufacture, vol. 40, no. 1, pp.95-111, 2000.
DOI: 10.1016/s0890-6955(99)00045-0
Google Scholar
[35]
P. McAllen and P. Phelan, "Numerical analysis of axisymmetric wire drawing by means of a coupled damage model," Journal of Materials Processing Technology, vol. 183, no. 2-3, pp.210-218, 2007.
DOI: 10.1016/j.jmatprotec.2006.10.014
Google Scholar
[36]
T. Mass´e, Study and optimization of high carbon steel flat wires. PhD thesis, Ecole nationale sup´erieure des Mines de Paris, 01 2010.
Google Scholar