Material Modeling and Numerical Analysis of the Heat Treatment in High Carbon Steels-Application to Ring Rolling

Article Preview

Abstract:

Numerical modeling of the heat treatment is developed over the past 30 years and connected to the industrial applications. This requires a good insight in the thermal, mechanical and metallurgical behavior of steels and the coupling effects among these physical phenomena. To describe these effects, a suitable material model is developed. Additionally, the thermo-mechanical behavior of multi-phase steel during the phase transformation is investigated. Furthermore, the material model is applied to describe the plastic behavior of the steel during the cooling process in process-integrated powder coating which is a new kind of ring-rolling process. It takes advantages of the high temperatures and high forces of the ring rolling process. This is not only to increase the ring's diameter, but also to integrate powder metallurgical multi-functional coatings within the same process. In order to increase the strength and wear properties of investigated steels, an appropriate heat treatment should be done. Therefore, the heat treatment after the rolling process is discussed which goes along with phase transformations. The paper is concluded by a detailed description of the process simulation and a comparison of its results with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2338-2347

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. W. Harbord and J. W. Hall, Metallurgy of steel, 7th ed. London, C. Griffin: Griffin, 1923.

Google Scholar

[2] K. H.Weber, "Ring rolling and the construction of ring mills", Stahl und Eisen, vol. 79, pp.1912-1923, (1959)

Google Scholar

[3] W. Johnson, I. MacLeod, and G. Needham, "An experimental investigation into the process of ring or metal tyre rolling", International Journal of Mechanical Sciences, vol. 10, no. 6, pp.455-468, 1968.

DOI: 10.1016/0020-7403(68)90026-x

Google Scholar

[4] I. Tiedemann, G. Hirt, R. Kopp, D. Michl, and N. Khanjari, "Material flow determination for radial flexible profile ring rolling", PRODUCTION ENGINEERING, vol. 1, pp.227-232, 2007.

DOI: 10.1007/s11740-007-0030-z

Google Scholar

[5] M. R.German, PowderMetallurgy and particulatematerials processing. Princeton,NewJersey, 08540-6692, USA: Metal Powder Industry, (2005)

Google Scholar

[6] R. Kebriaei, J. Frischkorn, and S. Reese, "A new method of intelligent control for system stabilization in process-integrated powder coating by radial axial rolling of rings", Journal of Computational and Applied Mathematics, no. 1, p. -, 2012.

DOI: 10.1016/j.cam.2012.06.040

Google Scholar

[7] R. Kebriaei, J. Frischkorn, and S. Reese, "Influence of geometric parameters on residual porosity in process-integrated powder coating by radial axial rolling of rings", Steel Research International, vol. special issue, no. 1, pp.162-168, 2011.

DOI: 10.1063/1.3589538

Google Scholar

[8] A. Hoefter, "Numerische simulation des härtens von stahlbauteilen mit verschleißbeständigen schichten", Ph.D. dissertation, Ruhr-University Bochum, 2006.

Google Scholar

[9] M. Avrami, "Kinetics of phase change i, general theory", Journal of chemical physics, vol. 7, pp.1103-1112, 1939.

Google Scholar

[10] J. B. Leblond, G. Mottet, and J. C. Devaux, "A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-i.'' Journal of the Mechanics and Physics of Solids, vol. 34, pp.395-409, 1986.

DOI: 10.1016/0022-5096(86)90009-8

Google Scholar

[11] J. B. Leblond and J. C. Devaux, "A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size", Acta Metallurgica, vol. 32, pp.137-146, 1984.

DOI: 10.1016/0001-6160(84)90211-6

Google Scholar

[12] A. N. Kolmogorov, "Statistical theory of crystallization of metals", Izv. Akad. Nauk SSSR, Ser. Mat; Bull. Acad. Sci. USSR. Ser. Math, vol. 1, pp.355-359, 1937.

Google Scholar

[13] W. A. Johnson and R. F.Mehl, "Reaction kinetics in processes of nucleation and growth", Trans. Am. Inst. Min. Metall. Eng., vol. 135, pp.416-458, 1939.

Google Scholar

[14] M. Avrami, "Kinetics of phase change. iii: Granulation, phase change and microstructure", Journal of Chemical Physics, vol. 9, pp.177-184, 1941.

DOI: 10.1063/1.1750872

Google Scholar

[15] D. P. Koistinen and R. E. Marburger, "A general equation for austenite-martensite transformation in pure carbon steels", Acta metall, vol. 7, pp.59-60, 1959.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[16] J. W. Christian, The Theory of Transformations in Metals and Alloys. Pergamon Press, 1975.

Google Scholar

[17] M. Hunkel, T. Luebben, F. Hoffmann, and P. Mayr, "Modellierung der bainitischen und perlitischen umwandlung bei staehlen", HTM. Haerterei-technische Mitteilungen, vol. 54, no. 6, pp.365-372, 1999.[18] E. Scheil, "Anlaufzeit der austenitumwandlung", Arch. Eisenh¨uttenwes, vol. 8, pp.565-567, 1935.

DOI: 10.1002/srin.193500186

Google Scholar

[19] W. Linert, "The isokinetic relationship. viii. investigation of unimolecular reaction systems", Chemical Physics, vol. 116, no. 3, pp.381-389, 1987.

DOI: 10.1016/0301-0104(87)80206-9

Google Scholar

[20] G. W. Greenwood and R. H. Johnson, "The deformation of metals under small stresses during phase transformations", Proc. R. Soc. Metals, vol. A, pp.283-403, 1965.

Google Scholar

[21] S. Denis, S. Sjöström, and A. Simon, "Coupled temperature, stress, phase transformation calculation", Metallurgical and Materials Transactions A, vol. 18, pp.1203-1212, (1987)

DOI: 10.1007/bf02647190

Google Scholar

[22] J. Leblond, J. Devaux, and J. Devaux, "Mathematical modelling of transformation plasticity in steels i: Case of ideal-plastic phases", International Journal of Plasticity, vol. 5, no. 6, pp.551-572, 1989.

DOI: 10.1016/0749-6419(89)90001-6

Google Scholar

[23] L. Taleb and S. Petit, "New investigations on transformation induced plasticity and its interaction with classical plasticity", International Journal of Plasticity, vol. 22, no. 1, pp.110-130, 2006.

DOI: 10.1016/j.ijplas.2005.03.012

Google Scholar

[24] A. S. Khan and R. Liang, "Behaviors of three bcc metals during non-proportional multi-axial loadings: experiments and modeling", International Journal of Plasticity, vol. 16, no. 12, pp.1443-1458, 2000.

DOI: 10.1016/s0749-6419(00)00016-4

Google Scholar