A Micro-Scale Model for Fiber Tow Characterization under Nondeterministic Assumption: Longitudinal and Transverse Permeability

Article Preview

Abstract:

Liquid Composite Molding processes are characterized by the impregnation of a dry fibrous perform by means of injection or infusion of a catalyzed resin. In recent years computational flow and cure models allowed for a remarkable time and cost compression in process planning with respect to trial and error procedures. In this contest multi-scale simulative approaches are gaining considerable attention and intriguing results have been recently presented. Most of the proposed models, however, rely on deterministic hypothesis, assuming perfect fiber packing and neglecting dimensional variations between fibers, in strong contrast with experimental observations. In this paper the influence of the stochastic variability of the fiber packing on tow permeability has been investigated by means of a CFD micro scale model. The variability of the microstructure defining the Representative Volume Element has been considered introducing random perturbations of the fiber packing. The components of the permeability tensor, in each case, have then been derived applying the Darcy model to flow simulations through the representative cell.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2348-2354

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Gutowski, Advanced composites manufacturing, John Wiley & Sons, New York, 1997.

Google Scholar

[2] J.A. Acheson, P. Simacek, S.G. Advani, The implications of fiber compaction and saturation on fully coupled VARTM simulation, Compos Part A: Appl S, 35 (2004), 159-169.

DOI: 10.1016/j.compositesa.2003.02.001

Google Scholar

[3] F. Trochu, Ruiz E., V. Achim, S. Soukane, Advanced numerical simulation of liquid composite molding for process analysis and optimization, Compos Part A: Appl S, 37 (2006), 890-902.

DOI: 10.1016/j.compositesa.2005.06.003

Google Scholar

[4] J.M. Bayldon, I.M. Daniel, Flow modeling of the VARTM process including progressive saturation effects, Compos Part A: Appl S, 40 (2009), 1044-1052.

DOI: 10.1016/j.compositesa.2009.04.008

Google Scholar

[5] P. Carlone, G.S. Palazzo, Computational analysis of the vacuum infusion process of reactive thermosetting resin, Proceedings of the 7th International Conference on Engineering Computational Technology ECT 2010, Paper 64 (2010)

DOI: 10.4203/ccp.94.64

Google Scholar

[6] Q. Govignon, S. Bickerton, P.A. Kelly, Simulation of the reinforcement compaction and resin flow during the complete resin infusion process, Compos Part A: Appl S, 41 (2010), 45-57.

DOI: 10.1016/j.compositesa.2009.07.007

Google Scholar

[7] V. A. F. Costa, and A. C. M. Sousa, Modeling of flow and thermo-kinetics during the cure of thick laminated composites, Int. J. Therm. Sci, 42 (2003) 15-22.

DOI: 10.1016/s1290-0729(02)00003-0

Google Scholar

[8] H.C. Park, N.S. Goo, K.J. Min, K.J. Yoon, Three-dimensional cure simulation of composite structures by the finite element method, Composite Structures 62 (2003) 51–57.

DOI: 10.1016/s0263-8223(03)00083-7

Google Scholar

[9] P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form, 2 (2009) 137-140.

DOI: 10.1007/s12289-009-0450-8

Google Scholar

[10] G. Yue, B. Zhang, F. Dai, S. Du, Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels, J. Mater. Sci. Technol., 26 (2010) 467-471.

DOI: 10.1016/s1005-0302(10)60074-6

Google Scholar

[11] H. Tan, T. Roy, K.M. Pillai, Variations in unsaturated flow with flow direction in resin transfer molding: An experimental investigation, Compos. Part A- Appl. S., 38 (2007) 1872–1892

DOI: 10.1016/j.compositesa.2007.04.002

Google Scholar

[12] G. Morren, S. Bossuyt, H. Sol, 2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method, Compos. Part A- Appl. S., 39 (2008) 1530–1536.

DOI: 10.1016/j.compositesa.2008.05.019

Google Scholar

[13] P. Carlone, G.S. Palazzo, Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor, Key Eng. Mat. 504-506 (2012) 289-294.

DOI: 10.4028/www.scientific.net/kem.504-506.289

Google Scholar

[14] S. Mekic, B. Bakke, Radial infusion models for permeability measurements of compressed fibrous beds, Int. J. Multiphas. Flow, 48 (2013) 1–10.

DOI: 10.1016/j.ijmultiphaseflow.2012.07.013

Google Scholar

[15] K. Okonkwo, P. Simacek, S.G. Advani, R.S. Parnas, Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation, Compos. Part A- Appl. S., 42 (2011) 1283–1292.

DOI: 10.1016/j.compositesa.2011.05.010

Google Scholar

[16] R. Arbter, J.M. Beraud, C. Binetruy, L. Bizet, J. Bréard, S. Comas-Cardona, C. Demaria, A. Endruweit, P. Ermanni, F. Gommer, S. Hasanovic, P. Henrat, F. Klunker, B. Laine, S. Lavanchy, S.V. Lomov, A. Long, V. Michaud, G. Morren, E. Ruiz, H. Sol, F. Trochu, B. Verleye, M. Wietgrefe, W. Wu, G. Ziegmann, Experimental determination of the permeability of textiles: A benchmark exercise, Compos. Part A- Appl. S., 42 (2011) 1157–1168

DOI: 10.1016/j.compositesa.2011.04.021

Google Scholar

[17] N.D. Ngo, K.K. Tamma, Microscale permeability predictions of porous fibrous media, Int. J. Heat Mass Tran., 44 (2001) 3135-3145.

DOI: 10.1016/s0017-9310(00)00335-5

Google Scholar

[18] Y.S. Song, J.R. Youn, Asymptotic expansion homogenization of permeability tensor for plain woven fabrics, Compos. Part A- Appl. S., 37 (2006) 2080–2087.

DOI: 10.1016/j.compositesa.2005.12.002

Google Scholar

[19] M.A. Choi, M.H. Lee, J. Chang, S.J. Lee, Permeability modeling of fibrous media in composite processing, J. Non-Newton Fluid, 79 (1998) 585-598.

DOI: 10.1016/s0377-0257(98)00120-7

Google Scholar

[20] T.J. Vaughan, C.T. McCarthy A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials, Compos Sci Technol, 70 (2010) 291–297.

DOI: 10.1016/j.compscitech.2009.10.020

Google Scholar

[21] D. Trias, J. Costa, J.A. Mayugo, J.E. Hurtado, Random models versus periodic models for fibre reinforced composites, Comp. Mater. Sci., 38 (2006) 316–324.

DOI: 10.1016/j.commatsci.2006.03.005

Google Scholar

[22] X. Chen, T.D. Papathanasiou, Interface stress distributions in transversely loaded continuous fiber composites: parallel computation in multi-fiber RVEs using the boundary element method, Comp. Mater. Sci., 64 (2004) 1101–1114

DOI: 10.1016/j.compscitech.2003.07.006

Google Scholar

[23] Georg Bechtold, Lin Ye, Influence of fibre distribution on the transverse flow permeability in fibre bundles, Compos Sci Technol, 63 (2003) 2069–2079.

DOI: 10.1016/s0266-3538(03)00112-x

Google Scholar

[24] X. Chen, T.D. Papathanasiou, On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays, Compos. Part A- Appl. S., 37 (2006) 836–846.

DOI: 10.1016/j.compositesa.2005.01.018

Google Scholar

[25] X. Chen, T.D. Papathanasiou, Micro-scale modeling of axial flow through unidirectional disordered fiber arrays, Compos Sci Technol, 67 (2007) 1286–1293.

DOI: 10.1016/j.compscitech.2006.10.011

Google Scholar

[26] X. Chen, T.D. Papathanasiou, The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing, Transp. Porous Med., 71 (2008) 233–251.

DOI: 10.1007/s11242-007-9123-6

Google Scholar

[27] A.R. Melro, P.P. Camanho, S.T. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites, Compos Sci Technol, 68 (2008) 2092–2102.

DOI: 10.1016/j.compscitech.2008.03.013

Google Scholar