[1]
T.G. Gutowski, Advanced composites manufacturing, John Wiley & Sons, New York, 1997.
Google Scholar
[2]
J.A. Acheson, P. Simacek, S.G. Advani, The implications of fiber compaction and saturation on fully coupled VARTM simulation, Compos Part A: Appl S, 35 (2004), 159-169.
DOI: 10.1016/j.compositesa.2003.02.001
Google Scholar
[3]
F. Trochu, Ruiz E., V. Achim, S. Soukane, Advanced numerical simulation of liquid composite molding for process analysis and optimization, Compos Part A: Appl S, 37 (2006), 890-902.
DOI: 10.1016/j.compositesa.2005.06.003
Google Scholar
[4]
J.M. Bayldon, I.M. Daniel, Flow modeling of the VARTM process including progressive saturation effects, Compos Part A: Appl S, 40 (2009), 1044-1052.
DOI: 10.1016/j.compositesa.2009.04.008
Google Scholar
[5]
P. Carlone, G.S. Palazzo, Computational analysis of the vacuum infusion process of reactive thermosetting resin, Proceedings of the 7th International Conference on Engineering Computational Technology ECT 2010, Paper 64 (2010)
DOI: 10.4203/ccp.94.64
Google Scholar
[6]
Q. Govignon, S. Bickerton, P.A. Kelly, Simulation of the reinforcement compaction and resin flow during the complete resin infusion process, Compos Part A: Appl S, 41 (2010), 45-57.
DOI: 10.1016/j.compositesa.2009.07.007
Google Scholar
[7]
V. A. F. Costa, and A. C. M. Sousa, Modeling of flow and thermo-kinetics during the cure of thick laminated composites, Int. J. Therm. Sci, 42 (2003) 15-22.
DOI: 10.1016/s1290-0729(02)00003-0
Google Scholar
[8]
H.C. Park, N.S. Goo, K.J. Min, K.J. Yoon, Three-dimensional cure simulation of composite structures by the finite element method, Composite Structures 62 (2003) 51–57.
DOI: 10.1016/s0263-8223(03)00083-7
Google Scholar
[9]
P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form, 2 (2009) 137-140.
DOI: 10.1007/s12289-009-0450-8
Google Scholar
[10]
G. Yue, B. Zhang, F. Dai, S. Du, Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels, J. Mater. Sci. Technol., 26 (2010) 467-471.
DOI: 10.1016/s1005-0302(10)60074-6
Google Scholar
[11]
H. Tan, T. Roy, K.M. Pillai, Variations in unsaturated flow with flow direction in resin transfer molding: An experimental investigation, Compos. Part A- Appl. S., 38 (2007) 1872–1892
DOI: 10.1016/j.compositesa.2007.04.002
Google Scholar
[12]
G. Morren, S. Bossuyt, H. Sol, 2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method, Compos. Part A- Appl. S., 39 (2008) 1530–1536.
DOI: 10.1016/j.compositesa.2008.05.019
Google Scholar
[13]
P. Carlone, G.S. Palazzo, Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor, Key Eng. Mat. 504-506 (2012) 289-294.
DOI: 10.4028/www.scientific.net/kem.504-506.289
Google Scholar
[14]
S. Mekic, B. Bakke, Radial infusion models for permeability measurements of compressed fibrous beds, Int. J. Multiphas. Flow, 48 (2013) 1–10.
DOI: 10.1016/j.ijmultiphaseflow.2012.07.013
Google Scholar
[15]
K. Okonkwo, P. Simacek, S.G. Advani, R.S. Parnas, Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation, Compos. Part A- Appl. S., 42 (2011) 1283–1292.
DOI: 10.1016/j.compositesa.2011.05.010
Google Scholar
[16]
R. Arbter, J.M. Beraud, C. Binetruy, L. Bizet, J. Bréard, S. Comas-Cardona, C. Demaria, A. Endruweit, P. Ermanni, F. Gommer, S. Hasanovic, P. Henrat, F. Klunker, B. Laine, S. Lavanchy, S.V. Lomov, A. Long, V. Michaud, G. Morren, E. Ruiz, H. Sol, F. Trochu, B. Verleye, M. Wietgrefe, W. Wu, G. Ziegmann, Experimental determination of the permeability of textiles: A benchmark exercise, Compos. Part A- Appl. S., 42 (2011) 1157–1168
DOI: 10.1016/j.compositesa.2011.04.021
Google Scholar
[17]
N.D. Ngo, K.K. Tamma, Microscale permeability predictions of porous fibrous media, Int. J. Heat Mass Tran., 44 (2001) 3135-3145.
DOI: 10.1016/s0017-9310(00)00335-5
Google Scholar
[18]
Y.S. Song, J.R. Youn, Asymptotic expansion homogenization of permeability tensor for plain woven fabrics, Compos. Part A- Appl. S., 37 (2006) 2080–2087.
DOI: 10.1016/j.compositesa.2005.12.002
Google Scholar
[19]
M.A. Choi, M.H. Lee, J. Chang, S.J. Lee, Permeability modeling of fibrous media in composite processing, J. Non-Newton Fluid, 79 (1998) 585-598.
DOI: 10.1016/s0377-0257(98)00120-7
Google Scholar
[20]
T.J. Vaughan, C.T. McCarthy A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials, Compos Sci Technol, 70 (2010) 291–297.
DOI: 10.1016/j.compscitech.2009.10.020
Google Scholar
[21]
D. Trias, J. Costa, J.A. Mayugo, J.E. Hurtado, Random models versus periodic models for fibre reinforced composites, Comp. Mater. Sci., 38 (2006) 316–324.
DOI: 10.1016/j.commatsci.2006.03.005
Google Scholar
[22]
X. Chen, T.D. Papathanasiou, Interface stress distributions in transversely loaded continuous fiber composites: parallel computation in multi-fiber RVEs using the boundary element method, Comp. Mater. Sci., 64 (2004) 1101–1114
DOI: 10.1016/j.compscitech.2003.07.006
Google Scholar
[23]
Georg Bechtold, Lin Ye, Influence of fibre distribution on the transverse flow permeability in fibre bundles, Compos Sci Technol, 63 (2003) 2069–2079.
DOI: 10.1016/s0266-3538(03)00112-x
Google Scholar
[24]
X. Chen, T.D. Papathanasiou, On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays, Compos. Part A- Appl. S., 37 (2006) 836–846.
DOI: 10.1016/j.compositesa.2005.01.018
Google Scholar
[25]
X. Chen, T.D. Papathanasiou, Micro-scale modeling of axial flow through unidirectional disordered fiber arrays, Compos Sci Technol, 67 (2007) 1286–1293.
DOI: 10.1016/j.compscitech.2006.10.011
Google Scholar
[26]
X. Chen, T.D. Papathanasiou, The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing, Transp. Porous Med., 71 (2008) 233–251.
DOI: 10.1007/s11242-007-9123-6
Google Scholar
[27]
A.R. Melro, P.P. Camanho, S.T. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites, Compos Sci Technol, 68 (2008) 2092–2102.
DOI: 10.1016/j.compscitech.2008.03.013
Google Scholar