[1]
M. B. Silva, M. Skjoedt, P. Martins, and N. Bay, "Revisiting the fundamentals of single point incremental forming by means of membrane analysis," International Journal of Machine Tools and Manufacture, vol. 48, no. 1, p.73–83, Jan. 2008.
DOI: 10.1016/j.ijmachtools.2007.07.004
Google Scholar
[2]
A. M. Habraken, "Single point incremental forming, a challenge for numerical and experimental teams." Plenary Lecture at NUMISHEET, Seoul, Korea, 2011.
Google Scholar
[3]
R. Malhotra, L. Xue, T. Belytschko, and J. Cao, "Mechanics of fracture in single point incremental forming," Journal of Materials Processing Technology, vol. 212, no. 7, p.1573–1590, Jul. 2012.
DOI: 10.1016/j.jmatprotec.2012.02.021
Google Scholar
[4]
J.-W. Yoon, D. Seong, and T. B. Stoughton, "Necking and Failure of Aluminium Alloy Sheets inIncremental Sheet Forming," 19th Simp Plasticity. Nassau, Bahamas, 2013.
Google Scholar
[5]
M. B. Silva, P. S. Nielsen, N. Bay, and P. a. F. Martins, "Failure mechanisms in single-point incremental forming of metals," The International Journal of Advanced Manufacturing Technology, vol. 56, no. 9–12, p.893–903, Jun. 2011.
DOI: 10.1007/s00170-011-3254-1
Google Scholar
[6]
L. Duchêne, C. F. Guzmán, A. K. Behera, J. Duflou, and A. M. Habraken, "Numerical Simulation of a Pyramid Steel Sheet Formed by Single Point Incremental Forming using Solid-Shell Finite Elements," submitted to SheMet, Belfast, North Ireland, 2013.
DOI: 10.4028/www.scientific.net/kem.549.180
Google Scholar
[7]
C. Bouffioux, P. Eyckens, C. Henrard, R. Aerens, A. Van Bael, H. Sol, J. Duflou, and A. M. Habraken, "Identification of material parameters to predict Single Point Incremental Forming forces," International Journal of Material Forming, vol. 1, p.1147–1150, 2008.
DOI: 10.1007/s12289-008-0183-0
Google Scholar
[8]
L. Filice, L. Fratini, and F. Micari, "Analysis of Material Formability in Incremental Forming," CIRP Annals - Manufacturing Technology, vol. 51, no. 1, p.199–202, 2002.
DOI: 10.1016/s0007-8506(07)61499-1
Google Scholar
[9]
S. P. Keeler and W. A. Backofen, "Plastic instability and fracture in sheets stretched over rigid punches," Transactions of the American Society for Metals, vol. 56, p.25–28, 1963.
Google Scholar
[10]
Z. Marciniak and K. Kuczynski, "Limit strains in the processes of stretch-forming sheet metal," International Journal of Mechanical Sciences, vol. 9, no. 9, p.609–620, Sep. 1967.
DOI: 10.1016/0020-7403(67)90066-5
Google Scholar
[11]
W. C. Emmens and A. H. van den Boogaard, "An overview of stabilizing deformation mechanisms in incremental sheet forming," Journal of Materials Processing Technology, vol. 209, no. 8, p.3688–3695, Apr. 2009.
DOI: 10.1016/j.jmatprotec.2008.10.003
Google Scholar
[12]
J. M. Allwood, D. R. Shouler, and A. E. Tekkaya, "The Increased Forming Limits of Incremental Sheet Forming Processes," Key Engineering Materials, vol. 344, p.621–628, 2007.
DOI: 10.4028/www.scientific.net/kem.344.621
Google Scholar
[13]
W. C. Emmens and A. H. van den Boogaard, "Strain in Shear, and Material Behaviour in Incremental Forming," Key Engineering Materials, vol. 344, p.519–526, 2007.
DOI: 10.4028/www.scientific.net/kem.344.519
Google Scholar
[14]
K. Jackson and J. M. Allwood, "The mechanics of incremental sheet forming," Journal of Materials Processing Technology, vol. 209, no. 3, p.1158–1174, Feb. 2009.
DOI: 10.1016/j.jmatprotec.2008.03.025
Google Scholar
[15]
P. Eyckens, B. Belkassem, C. Henrard, J. Gu, H. Sol, A. M. Habraken, J. Duflou, A. Bael, and P. van Houtte, "Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction," International Journal of Material Forming, p.55–71, Aug. 2010.
DOI: 10.1007/s12289-010-0995-6
Google Scholar
[16]
J. M. Allwood and D. R. Shouler, "Generalised forming limit diagrams showing increased forming limits with non-planar stress states," International Journal of Plasticity, vol. 25, no. 7, p.1207–1230, Jul. 2009.
DOI: 10.1016/j.ijplas.2008.11.001
Google Scholar
[17]
P. Eyckens, A. Van Bael, and P. Van Houtte, "An extended Marciniak–Kuczynski model for anisotropic sheet subjected to monotonic strain paths with through-thickness shear," International Journal of Plasticity, vol. 27, no. 10, p.1577–1597, Oct. 2011.
DOI: 10.1016/j.ijplas.2011.03.008
Google Scholar
[18]
W. C. Emmens and a. H. van den Boogaard, "The Stabilizing Effect of Bending-Under-Tension," in ESAFORM, 2011, vol. 1588, p.1583–1588.
DOI: 10.1063/1.3589742
Google Scholar
[19]
D. Kitting, A. Ofenheimer, H. Pauli, and E. T. Till, "Experimental Characterization of Stretch-Bending Formability of AHSS Sheets," in ESAFORM, 2011, vol. 1594, p.1589–1594.
DOI: 10.1063/1.3589743
Google Scholar
[20]
P. Eyckens, S. He, A. van Bael, P. Van Houtte, and J. Duflou, "Forming Limit Predictions for the Serrated Strain Paths in Single Point Incremental Sheet Forming," in NUMIFORM, 2007, vol. 908, p.141–146.
DOI: 10.1063/1.2740802
Google Scholar
[21]
M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux, "Recent extensions of Gurson's model for porous ductile materials," in International Seminar of Micromechanics, 1996, p.61–130.
DOI: 10.1007/978-3-7091-2662-2_2
Google Scholar
[22]
T. Pardoen, "Numerical simulation of low stress triaxiality ductile fracture," Computers & Structures, vol. 84, no. 26–27, p.1641–1650, Oct. 2006.
DOI: 10.1016/j.compstruc.2006.05.001
Google Scholar
[23]
F. Bron and J. Besson, "Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets," Engineering Fracture Mechanics, vol. 73, no. 11, p.1531–1552, Jul. 2006.
DOI: 10.1016/j.engfracmech.2006.01.024
Google Scholar
[24]
I. Barsoum and J. Faleskog, "Rupture mechanisms in combined tension and shear-Experiments," International Journal of Solids and Structures, vol. 44, no. 6, p.1768–1786, Mar. 2007.
DOI: 10.1016/j.ijsolstr.2006.09.031
Google Scholar
[25]
Y. Bao and T. Wierzbicki, "On fracture locus in the equivalent strain and stress triaxiality space," International Journal of Mechanical Sciences, vol. 46, no. 1, p.81–98, Jan. 2004.
DOI: 10.1016/j.ijmecsci.2004.02.006
Google Scholar
[26]
A. L. Gurson, "Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media," Journal of Engineering Materials and Technology, vol. 99, no. 1, p.2–15, 1977.
DOI: 10.1115/1.3443401
Google Scholar
[27]
K. Danas and P. Ponte Castañeda, "Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials," International Journal of Solids and Structures, vol. 49, no. 11–12, p.1325–1342, Jun. 2012.
DOI: 10.1016/j.ijsolstr.2012.02.006
Google Scholar
[28]
K. Zhang, J. Bai, and D. François, "Numerical analysis of the influence of the Lode parameter on void growth," International Journal of Solids and Structures, vol. 38, no. 32–33, p.5847–5856, Aug. 2001.
DOI: 10.1016/s0020-7683(00)00391-7
Google Scholar
[29]
K. Nahshon and J. W. Hutchinson, "Modification of the Gurson Model for shear failure," European Journal of Mechanics - A/Solids, vol. 27, no. 1, p.1–17, Jan. 2008.
DOI: 10.1016/j.euromechsol.2007.08.002
Google Scholar
[30]
K. L. Nielsen and V. Tvergaard, "Ductile shear failure or plug failure of spot welds modelled by modified Gurson model," Engineering Fracture Mechanics, vol. 77, no. 7, p.1031–1047, May 2010.
DOI: 10.1016/j.engfracmech.2010.02.031
Google Scholar
[31]
W. Lode, "Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel," Zeitschrift für Physik, vol. 36, no. 11–12, p.913–939, Nov. 1926.
DOI: 10.1007/bf01400222
Google Scholar
[32]
T. Wierzbicki, Y. Bao, Y.-W. Lee, and Y. Bai, "Calibration and evaluation of seven fracture models," International Journal of Mechanical Sciences, vol. 47, no. 4–5, p.719–743, Apr. 2005.
DOI: 10.1016/j.ijmecsci.2005.03.003
Google Scholar
[33]
Y. Bai and T. Wierzbicki, "A new model of metal plasticity and fracture with pressure and Lode dependence," International Journal of Plasticity, vol. 24, no. 6, p.1071–1096, Jun. 2008.
DOI: 10.1016/j.ijplas.2007.09.004
Google Scholar
[34]
J. Duflou, J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, and A. M. Habraken, "Process window enhancement for single point incremental forming through multi-step toolpaths," CIRP Annals - Manufacturing Technology, vol. 57, no. 1, p.253–256, 2008.
DOI: 10.1016/j.cirp.2008.03.030
Google Scholar
[35]
L. Duchêne, A. Ben Bettaieb, and A. M. Habraken, "Assessment of the Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) techniques in the mechanical behavior of the SSH3D solid-shell element," in COMPLAS, 2011.
DOI: 10.4028/www.scientific.net/kem.504-506.913
Google Scholar
[36]
C. Henrard, C. Bouffioux, P. Eyckens, H. Sol, J. Duflou, P. van Houtte, A. Van Bael, L. Duchêne, and A. M. Habraken, "Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity," Computational Mechanics, vol. 47, no. 5, p.573–590, Dec. 2010.
DOI: 10.1007/s00466-010-0563-4
Google Scholar
[37]
A. Mertens, C. F. Guzmán, A. M. Habraken, A. K. Behera, and J. Lecomte-Beckers, "Experimental Characterisation of Damage Occuring during Single Point Incremental Forming of a Ferritic Steel," Poster at Dortmund summer shool, Dortmund, Germany, 2012.
Google Scholar