Towards Fracture Prediction in Single Point Incremental Forming

Article Preview

Abstract:

The stress state in metal forming processes usually implies low values of triaxiality. It is well known that damage models based only on triaxiality fails to capture the damage behavior properly, and recent articles have stressed the effect of the Lode parameter in describing damage. Moreover, in some process like incremental forming, the through thickness shear could dominate the rupture mechanism making the description, using solely the triaxiality, inaccurate. In this paper, a preliminary study of the stress state is carried over a near-to-failure single point incremental forming (SPIF) formed cone, through finite elements simulations using a newly developed solid-shell element. The results provide a basis for further studies into damage development in SPIF.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2355-2362

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. B. Silva, M. Skjoedt, P. Martins, and N. Bay, "Revisiting the fundamentals of single point incremental forming by means of membrane analysis," International Journal of Machine Tools and Manufacture, vol. 48, no. 1, p.73–83, Jan. 2008.

DOI: 10.1016/j.ijmachtools.2007.07.004

Google Scholar

[2] A. M. Habraken, "Single point incremental forming, a challenge for numerical and experimental teams." Plenary Lecture at NUMISHEET, Seoul, Korea, 2011.

Google Scholar

[3] R. Malhotra, L. Xue, T. Belytschko, and J. Cao, "Mechanics of fracture in single point incremental forming," Journal of Materials Processing Technology, vol. 212, no. 7, p.1573–1590, Jul. 2012.

DOI: 10.1016/j.jmatprotec.2012.02.021

Google Scholar

[4] J.-W. Yoon, D. Seong, and T. B. Stoughton, "Necking and Failure of Aluminium Alloy Sheets inIncremental Sheet Forming," 19th Simp Plasticity. Nassau, Bahamas, 2013.

Google Scholar

[5] M. B. Silva, P. S. Nielsen, N. Bay, and P. a. F. Martins, "Failure mechanisms in single-point incremental forming of metals," The International Journal of Advanced Manufacturing Technology, vol. 56, no. 9–12, p.893–903, Jun. 2011.

DOI: 10.1007/s00170-011-3254-1

Google Scholar

[6] L. Duchêne, C. F. Guzmán, A. K. Behera, J. Duflou, and A. M. Habraken, "Numerical Simulation of a Pyramid Steel Sheet Formed by Single Point Incremental Forming using Solid-Shell Finite Elements," submitted to SheMet, Belfast, North Ireland, 2013.

DOI: 10.4028/www.scientific.net/kem.549.180

Google Scholar

[7] C. Bouffioux, P. Eyckens, C. Henrard, R. Aerens, A. Van Bael, H. Sol, J. Duflou, and A. M. Habraken, "Identification of material parameters to predict Single Point Incremental Forming forces," International Journal of Material Forming, vol. 1, p.1147–1150, 2008.

DOI: 10.1007/s12289-008-0183-0

Google Scholar

[8] L. Filice, L. Fratini, and F. Micari, "Analysis of Material Formability in Incremental Forming," CIRP Annals - Manufacturing Technology, vol. 51, no. 1, p.199–202, 2002.

DOI: 10.1016/s0007-8506(07)61499-1

Google Scholar

[9] S. P. Keeler and W. A. Backofen, "Plastic instability and fracture in sheets stretched over rigid punches," Transactions of the American Society for Metals, vol. 56, p.25–28, 1963.

Google Scholar

[10] Z. Marciniak and K. Kuczynski, "Limit strains in the processes of stretch-forming sheet metal," International Journal of Mechanical Sciences, vol. 9, no. 9, p.609–620, Sep. 1967.

DOI: 10.1016/0020-7403(67)90066-5

Google Scholar

[11] W. C. Emmens and A. H. van den Boogaard, "An overview of stabilizing deformation mechanisms in incremental sheet forming," Journal of Materials Processing Technology, vol. 209, no. 8, p.3688–3695, Apr. 2009.

DOI: 10.1016/j.jmatprotec.2008.10.003

Google Scholar

[12] J. M. Allwood, D. R. Shouler, and A. E. Tekkaya, "The Increased Forming Limits of Incremental Sheet Forming Processes," Key Engineering Materials, vol. 344, p.621–628, 2007.

DOI: 10.4028/www.scientific.net/kem.344.621

Google Scholar

[13] W. C. Emmens and A. H. van den Boogaard, "Strain in Shear, and Material Behaviour in Incremental Forming," Key Engineering Materials, vol. 344, p.519–526, 2007.

DOI: 10.4028/www.scientific.net/kem.344.519

Google Scholar

[14] K. Jackson and J. M. Allwood, "The mechanics of incremental sheet forming," Journal of Materials Processing Technology, vol. 209, no. 3, p.1158–1174, Feb. 2009.

DOI: 10.1016/j.jmatprotec.2008.03.025

Google Scholar

[15] P. Eyckens, B. Belkassem, C. Henrard, J. Gu, H. Sol, A. M. Habraken, J. Duflou, A. Bael, and P. van Houtte, "Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction," International Journal of Material Forming, p.55–71, Aug. 2010.

DOI: 10.1007/s12289-010-0995-6

Google Scholar

[16] J. M. Allwood and D. R. Shouler, "Generalised forming limit diagrams showing increased forming limits with non-planar stress states," International Journal of Plasticity, vol. 25, no. 7, p.1207–1230, Jul. 2009.

DOI: 10.1016/j.ijplas.2008.11.001

Google Scholar

[17] P. Eyckens, A. Van Bael, and P. Van Houtte, "An extended Marciniak–Kuczynski model for anisotropic sheet subjected to monotonic strain paths with through-thickness shear," International Journal of Plasticity, vol. 27, no. 10, p.1577–1597, Oct. 2011.

DOI: 10.1016/j.ijplas.2011.03.008

Google Scholar

[18] W. C. Emmens and a. H. van den Boogaard, "The Stabilizing Effect of Bending-Under-Tension," in ESAFORM, 2011, vol. 1588, p.1583–1588.

DOI: 10.1063/1.3589742

Google Scholar

[19] D. Kitting, A. Ofenheimer, H. Pauli, and E. T. Till, "Experimental Characterization of Stretch-Bending Formability of AHSS Sheets," in ESAFORM, 2011, vol. 1594, p.1589–1594.

DOI: 10.1063/1.3589743

Google Scholar

[20] P. Eyckens, S. He, A. van Bael, P. Van Houtte, and J. Duflou, "Forming Limit Predictions for the Serrated Strain Paths in Single Point Incremental Sheet Forming," in NUMIFORM, 2007, vol. 908, p.141–146.

DOI: 10.1063/1.2740802

Google Scholar

[21] M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux, "Recent extensions of Gurson's model for porous ductile materials," in International Seminar of Micromechanics, 1996, p.61–130.

DOI: 10.1007/978-3-7091-2662-2_2

Google Scholar

[22] T. Pardoen, "Numerical simulation of low stress triaxiality ductile fracture," Computers & Structures, vol. 84, no. 26–27, p.1641–1650, Oct. 2006.

DOI: 10.1016/j.compstruc.2006.05.001

Google Scholar

[23] F. Bron and J. Besson, "Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets," Engineering Fracture Mechanics, vol. 73, no. 11, p.1531–1552, Jul. 2006.

DOI: 10.1016/j.engfracmech.2006.01.024

Google Scholar

[24] I. Barsoum and J. Faleskog, "Rupture mechanisms in combined tension and shear-Experiments," International Journal of Solids and Structures, vol. 44, no. 6, p.1768–1786, Mar. 2007.

DOI: 10.1016/j.ijsolstr.2006.09.031

Google Scholar

[25] Y. Bao and T. Wierzbicki, "On fracture locus in the equivalent strain and stress triaxiality space," International Journal of Mechanical Sciences, vol. 46, no. 1, p.81–98, Jan. 2004.

DOI: 10.1016/j.ijmecsci.2004.02.006

Google Scholar

[26] A. L. Gurson, "Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media," Journal of Engineering Materials and Technology, vol. 99, no. 1, p.2–15, 1977.

DOI: 10.1115/1.3443401

Google Scholar

[27] K. Danas and P. Ponte Castañeda, "Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials," International Journal of Solids and Structures, vol. 49, no. 11–12, p.1325–1342, Jun. 2012.

DOI: 10.1016/j.ijsolstr.2012.02.006

Google Scholar

[28] K. Zhang, J. Bai, and D. François, "Numerical analysis of the influence of the Lode parameter on void growth," International Journal of Solids and Structures, vol. 38, no. 32–33, p.5847–5856, Aug. 2001.

DOI: 10.1016/s0020-7683(00)00391-7

Google Scholar

[29] K. Nahshon and J. W. Hutchinson, "Modification of the Gurson Model for shear failure," European Journal of Mechanics - A/Solids, vol. 27, no. 1, p.1–17, Jan. 2008.

DOI: 10.1016/j.euromechsol.2007.08.002

Google Scholar

[30] K. L. Nielsen and V. Tvergaard, "Ductile shear failure or plug failure of spot welds modelled by modified Gurson model," Engineering Fracture Mechanics, vol. 77, no. 7, p.1031–1047, May 2010.

DOI: 10.1016/j.engfracmech.2010.02.031

Google Scholar

[31] W. Lode, "Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel," Zeitschrift für Physik, vol. 36, no. 11–12, p.913–939, Nov. 1926.

DOI: 10.1007/bf01400222

Google Scholar

[32] T. Wierzbicki, Y. Bao, Y.-W. Lee, and Y. Bai, "Calibration and evaluation of seven fracture models," International Journal of Mechanical Sciences, vol. 47, no. 4–5, p.719–743, Apr. 2005.

DOI: 10.1016/j.ijmecsci.2005.03.003

Google Scholar

[33] Y. Bai and T. Wierzbicki, "A new model of metal plasticity and fracture with pressure and Lode dependence," International Journal of Plasticity, vol. 24, no. 6, p.1071–1096, Jun. 2008.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[34] J. Duflou, J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, and A. M. Habraken, "Process window enhancement for single point incremental forming through multi-step toolpaths," CIRP Annals - Manufacturing Technology, vol. 57, no. 1, p.253–256, 2008.

DOI: 10.1016/j.cirp.2008.03.030

Google Scholar

[35] L. Duchêne, A. Ben Bettaieb, and A. M. Habraken, "Assessment of the Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) techniques in the mechanical behavior of the SSH3D solid-shell element," in COMPLAS, 2011.

DOI: 10.4028/www.scientific.net/kem.504-506.913

Google Scholar

[36] C. Henrard, C. Bouffioux, P. Eyckens, H. Sol, J. Duflou, P. van Houtte, A. Van Bael, L. Duchêne, and A. M. Habraken, "Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity," Computational Mechanics, vol. 47, no. 5, p.573–590, Dec. 2010.

DOI: 10.1007/s00466-010-0563-4

Google Scholar

[37] A. Mertens, C. F. Guzmán, A. M. Habraken, A. K. Behera, and J. Lecomte-Beckers, "Experimental Characterisation of Damage Occuring during Single Point Incremental Forming of a Ferritic Steel," Poster at Dortmund summer shool, Dortmund, Germany, 2012.

Google Scholar