[1]
Grosman F. Characteristics of technological plasticity of materials present state and expectations. Rudy Metale 2003;R48(10–11):446–68 [in Polish].
Google Scholar
[2]
McClintock FA. A criterion of ductile fracture by the growth of holes. J Appl Mech 1968;35:363–71.
Google Scholar
[3]
Rice JR, Trecey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 1969;17:201–17.
DOI: 10.1016/0022-5096(69)90033-7
Google Scholar
[4]
Atkins AG. Fracture in forming. J Mater Process Technol 1996;56: 609–18.
Google Scholar
[5]
Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 2004;46:81–98.
DOI: 10.1016/j.ijmecsci.2004.02.006
Google Scholar
[6]
Mohr D, Henn S. Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental-numerical method. Exp Mech 2007;47:805–20.
DOI: 10.1007/s11340-007-9039-7
Google Scholar
[7]
Goijaerts AM, Govaert LE, Baaijens FPT. Evaluation of ductile fracture models for different metals in blanking. J Mater Process Technol 2001;59(110):312–23.
DOI: 10.1016/s0924-0136(00)00892-x
Google Scholar
[8]
Hambli R, Reszka M. Fracture criteria identification using an inverse technique method and blanking experiment. Int J Mech Sci 2002;44:1349–61.
DOI: 10.1016/s0020-7403(02)00049-8
Google Scholar
[9]
Cockroft MG, Latham DJ. Ductility and the Workability of Metals. J Inst Met 1968;96:33–9.
Google Scholar
[10]
Rice JR, Trecey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 1969;17:201–17.
DOI: 10.1016/0022-5096(69)90033-7
Google Scholar
[11]
Oyane M, Sato T, Okimoto K, Shima S. Criteria for ductile fracture and their applications. J Mech Work Technol 1980;4:65–81.
DOI: 10.1016/0378-3804(80)90006-6
Google Scholar
[12]
Taupin E, Breitling J, Wei-Tsu W, Altan T. Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. J Mater Process Technol 1996;59:68–78.
DOI: 10.1016/0924-0136(96)02288-1
Google Scholar
[13]
Brokken D, Brekelmans WAM, Baaijens FPT. Predicting the shape of blanked products: a finite element approach. J Mater Process Technol 2000;103: 51–6.
DOI: 10.1016/s0924-0136(00)00418-0
Google Scholar
[14]
Fang G, Zeng P, Lou L. Finite element simulation of the effect of clearance on the forming quality in the blanking process. J Mater Process Technol 2002;122:249–54.
DOI: 10.1016/s0924-0136(02)00056-0
Google Scholar
[15]
Kut S. The method of ductile fracture modeling and predicting the shape of blanks. Prog Technol Mater 2007:15–25 [OWPRz, Rzeszów].
Google Scholar
[16]
Komori K. Ductile fracture criteria for simulating shear by node separation method. Theor Appl Fract Mech 2005;43:101–14.
DOI: 10.1016/j.tafmec.2004.12.006
Google Scholar
[17]
Dodd B, Bay Y (1987) Ductile fracture and ductility. Academic, London.
Google Scholar
[18]
Thomason PF (1990) Ductile fracture of metals. Pergamon, Oxford.
Google Scholar
[19]
McClintock FA (1968) A criterion for ductile fracture by the growth of holes. Trans ASME J Appl Mech 35:363–371.
Google Scholar
[20]
Brozzo P, deLuka B, Rendina R (1972) A new method for the prediction of formability in metal sheets, in Proceedings of the Seventh Biennial Conference on Sheet Metal Forming and Formability. International Deep Drawing Research Group.
Google Scholar
[21]
Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33–39.
Google Scholar
[22]
Hatanaka N, Yamaguchi K, Takakura N (2003) Finite element simulation of the shearing mechanism in the blanking of sheet metal. J Mater Process Technol 139:64–70 doi:10.1016/S0924- 0136(03)00183-3.
DOI: 10.1016/s0924-0136(03)00183-3
Google Scholar