Ductile Failure Modelling in AA5182 Aluminium Alloy Sheet Forming

Article Preview

Abstract:

A modular ductile failure model is presented and applied to the forming of an AA5182 aluminium alloy sheet. A detailed description of the failure model and its calibration is provided. The final application of the calibrated failure model to the deep drawing of a cruciform cup reveals a good correlation with the experimental findings. Finally, a study on the influence of the r-value on formability is conducted.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

47-62

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Aretz, F. Barlat: General Orthotropic Yield Functions Based on Linear Stress Deviator Transformations, Proc. 8th International Conference on Numerical Methods in Industrial Forming Processes - NUMIFORM 2004, edited by S. Ghosh, J.K. Lee and J.C. Castro, AIP Conf. Proc. 712, pp.147-156 (2004)

DOI: 10.1063/1.1766515

Google Scholar

[2] H. Aretz: A less hypothetical perspective on rate-independent continuum theory of metal plasticity, Mechanics Research Communications 33 (2006) 734-738

DOI: 10.1016/j.mechrescom.2006.01.006

Google Scholar

[3] H. Aretz: Numerical analysis of diffuse and localized necking in orthotropic sheet metals, International Journal of Plasticity 23 (2007) 798-840

DOI: 10.1016/j.ijplas.2006.07.005

Google Scholar

[4] H. Aretz: A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals, Mechanics Research Communications 34 (2007) 344-351

DOI: 10.1016/j.mechrescom.2007.01.002

Google Scholar

[5] H. Aretz: A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals, International Journal of Plasticity 24 (2008) 1457-1480

DOI: 10.1016/j.ijplas.2007.10.002

Google Scholar

[6] H. Aretz: An extension of Hill's localized necking model, International Journal of Engineering Science 48 (2010) 312-331

DOI: 10.1016/j.ijengsci.2009.09.007

Google Scholar

[7] H. Aretz, J. Aegerter, O. Engler: Analysis of earing in deep drawn cups, Proc. 10th International Conference on Numerical Methods in Industrial Forming Processes - NUMIFORM 2010, edited by F. Barlat, Y. H. Moon and M. G. Lee, AIP Conf. Proc. 1252, pp.417-424 (2010)

DOI: 10.1063/1.3457585

Google Scholar

[8] H. Aretz, S. Keller, R. Vogt, O. Engler: Modelling of ductile failure in aluminium sheet forming simulation, International Journal of Material Forming 4 (2011) 163-182

DOI: 10.1007/s12289-010-1021-8

Google Scholar

[9] H. Aretz, S. Keller: On the non-balanced biaxial stress state in bulge-testing, Steel Research International 2011 Special Edition, pp.738-743 (2011)

Google Scholar

[10] H. Aretz, F. Barlat: Unconditionally convex yield functions for sheet metal forming based on linear stress deviator transformation, Key Engineering Materials 504-506 (2012) 667-672

DOI: 10.4028/www.scientific.net/kem.504-506.667

Google Scholar

[11] R. Arrieux: Determination and use of the forming limit stress diagrams in sheet metal forming, Journal of Materials Processing Technology 53 (1995) 47-56

DOI: 10.1016/0924-0136(95)01960-m

Google Scholar

[12] F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick: Linear transfomation-based anisotropic yield functions, International Journal of Plasticity 21 (2005) 1009-1039

DOI: 10.1016/j.ijplas.2004.06.004

Google Scholar

[13] A. Graf, W. Hosford: The influence of strain-path changes on forming limit diagrams of Al 6111 T4, International Journal of Mechanical Sciences 36 (1994) 897-910[14] W.F. Hosford, R.M. Caddell: Metal Forming -- Mechanics and Metallurgy, 2nd edition, Prentice Hall, (1993)

DOI: 10.1016/0020-7403(94)90053-1

Google Scholar

[15] L.M. Kachanov: Fundamentals of the Theory of Plasticity, Dover Publications, (2004)

Google Scholar

[16] S. Keller, W. Hotz, H. Friebe: Yield curve determination using the bulge test combined with optical measurement, Proc. International Conference of the International Deep Drawing Research Group (IDDRG), Golden, CO, USA (2009)

Google Scholar

[17] R.A. Lebensohn, C.N. Tomé: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater. 41 (1993) 2611-2624

DOI: 10.1016/0956-7151(93)90130-k

Google Scholar

[18] R.A. Lingbeek, T. Meinders, A. Rietman: Tool and blank interaction in the cross-die forming process, In: Proc. 11th ESAFORM Conference on Material Forming, 23-25 April 2008, Lyon, France, (2008)

DOI: 10.1007/s12289-008-0016-1

Google Scholar

[19] J.C. Simo, T.J.R. Hughes: Computational Inelasticity, Springer-Verlag, (1998)

Google Scholar

[20] T.B. Stoughton: A general forming limit criterion for sheet metal forming, International Journal of Mechanical Sciences 42 (2000) 1-27

DOI: 10.1016/s0020-7403(98)00113-1

Google Scholar

[21] K. Yoshida, T. Kuwabara, M. Kuroda: Path-dependence of the forming limit stresses in a sheet metal, International Journal of Plasticity 23 (2007) 361-384

DOI: 10.1016/j.ijplas.2006.05.005

Google Scholar

[22] K. Yoshida, N. Suzuki: Forming limit stresses predicted by phenomenological plasticity theories with anisotropic work-hardening behavior, International Journal of Plasticity 24 (2008) 118-139

DOI: 10.1016/j.ijplas.2007.02.008

Google Scholar