Analysis of the Deformation Behavior of Ti-6Al-4V at Elevated Temperatures

Article Preview

Abstract:

Titanium alloys, such as Ti-6Al-4V, offer favorable characteristics as significant strength, biocompatibility and metallurgical stability at elevated temperatures. These advantages afford the application of parts out of Ti-6Al-4V in a wide field within aerospace, astronautic and medical technologies. Most applied shaping operations for parts out of titanium alloys are forging, casting, forming and machining. In order to develop and improve forming operations numerical simulations are applied during preprocessing. For that purpose mechanical properties of the material such as yield stress and Lankford parameter have to be determined. Due to the two-phase (α + β) microstructure of Ti-6Al-4V, forming operations have to be carried out at elevated temperatures to reduce the required forming force and extend forming limits. Taking the temperature and stress state dependency of the material into consideration, uniaxial tensile and compression tests are accomplished at elevated temperatures, ranging from 400 to 600 °C. Furthermore, the experimentally determined yield stress and Lankford parameter are approximated with the yield loci model proposed by Barlat 2000. The model predicts the flow response of the material, thus provides input data for the finite element analysis of forming processes at different temperature levels.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

29-32

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Peters, M., Leyens, C.: Titan und Titanlegierungen. Weinheim: WILEY-VCH Verlag GmbH (2002).

Google Scholar

[2] Lütjering, G., Williams, J. C.: Titanium. Engineering Materials, Processes, Berlin, Heidelberg: Springer-Verlag (2007).

Google Scholar

[3] Majorell, A., Srivatsa, S., Picu, R. C.: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part I: Experimental results. Materials Science and Engineering: A, volume 326, No. 2 (2002), pp.297-305.

DOI: 10.1016/s0921-5093(01)01507-6

Google Scholar

[4] Barlat, F., Brem, J. C., Yoon, J. W., Chung, K. et al.: Plane stress yield function for aluminum alloy sheets - Part 1: Theory. International Journal of Plasticity, volume 19, No. 9 (2003), pp.1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[5] Banabic, D.: Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Berlin, Heidelberg: Springer-Verlag (2010).

Google Scholar

[6] Lange, K.: Umformtechnik - Handbuch für Industrie und Wissenschaft. Band 1: Grundlagen. Berlin: Springer-Verlag (2002).

Google Scholar

[7] Lange, K.: Umformtechnik. Handbuch für Industrie und Wissenschaft: Band 3: Blechbearbeitung. Berlin: Springer-Verlag (1990).

Google Scholar

[8] DIN EN ISO 6892-2: 2011: Metallic materials - Tensile testing - Part 2: Method of test at elevated temperature, German version EN ISO 6892-2: 2011. (2011), Beuth-Verlag: Berlin.

Google Scholar

[9] DIN 50106: Testing of Metallic Materials; Compression Test. (1978), Beuth-Verlag: Berlin.

Google Scholar

[10] Merklein, M.: Charakterisierung von Blechwerkstoffen für den Leichtbau. Bamberg: Meisenbach (2006).

Google Scholar