[1]
Staszewski W.J., Boller C., Tomlinson G.R. (Eds.)., 2003, Health Monitoring of Aerospace Structures. John Wiley & Sons.
Google Scholar
[2]
Inman D.J., Farrar C.R., Lopes Jr. V., Steffen Jr. V (Eds.)., 2005, Damage Prognosis for Aerospace, Civil and Mechanical Systems. John Wiley & Sons.
DOI: 10.1002/0470869097
Google Scholar
[3]
Masters J.E. (Ed.)., 1992, Damage Detection in Composite Materials. Philadelphia: ASTM STP 1128 American Society for Testing and Materials.
Google Scholar
[4]
Johnson P., 1999, The new wave in acoustic testing. Materials World, 7 (9), p.544–546.
Google Scholar
[5]
Donskoy D.M., Sutin A.M., 1999, Vibro-acoustic modulation nondestructive evaluation technique. J. Intell. Mater. Syst. Struct., 9, p.765–775.
Google Scholar
[6]
Klepka A., Staszewski W.J., Jenal R.B., Szwedo M., Iwaniec J., Uhl T., 2011, Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations, Structural Health Monitoring, 11(2), pp.197-211.
DOI: 10.1177/1475921711414236
Google Scholar
[7]
Parsons Z., Staszewski W.J., 2006, Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures. Smart Materials and Structures, 15, p.1110–1118.
DOI: 10.1088/0964-1726/15/4/025
Google Scholar
[8]
Zaitsev V., Sas P., 2000, Nonlinear response of a weakly damaged metal sample: a dissipative modulation mechanism of vibro-acoustic interaction. J. Vib. Control, 6, p.803–822.
DOI: 10.1177/107754630000600601
Google Scholar
[9]
Donskoy D.M., Sutin A.M., Ekimov A., 2001, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT&E Int., 34(4), p.231–238.
DOI: 10.1016/s0963-8695(00)00063-3
Google Scholar
[10]
Zaitsev V., Gusev V., Castagnede B., 2002, Observation of the Luxemburg–Gorki effect for elastic waves. Ultrasonics, 40(1), p.627–631.
DOI: 10.1016/s0041-624x(02)00187-7
Google Scholar
[11]
Zaitsev V., Gusev V., Castagnede B., 2003, Thermoelastic mechanism for logarithmic slow dynamics and memory in elastic wave interaction with individual cracks. Phys Rev Lett, 90.
DOI: 10.1103/physrevlett.90.075501
Google Scholar
[12]
Donskoy, D., Sutin, A., Ekimov, A. 2001, Nonlinear Acoustic Interaction on Contact Interfaces and its use for Nondestructive Testing. NDT&E International. 34(4), pp.231-238.
DOI: 10.1016/s0963-8695(00)00063-3
Google Scholar
[13]
Solodov I.Yu., Krohn N., Busse G., 2002, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics. 40, p.621–625.
DOI: 10.1016/s0041-624x(02)00186-5
Google Scholar
[14]
Aymerich F., Staszewski W.J., 2010. Impact damage detection in composite laminates using nonlinear acoustics. Composites Part A: Applied Science and Manufacturing. 41, pp.1084-1092.
DOI: 10.1016/j.compositesa.2009.09.004
Google Scholar
[15]
Antonets V.A., Donskoy D.M., Sutin A.M., 1986. Nonlinear-vibro diagnostics of flaw in multilayered structures. Compos. Mater., 15, p.934–937.
Google Scholar
[16]
MSC Software, 2012, http://www.mscsoftware.com/Products/CAE-Tools/Patran.aspx.
Google Scholar
[17]
MSC Software, 2012, http://www.mscsoftware.com/Products/CAE-Tools/MSC-Nastran.aspx.
Google Scholar