[1]
C. Piguet, Low-Power Electronics Design, Computer Engineering Series, CRC Press, (2005).
Google Scholar
[2]
R. Bogue, Energy harvesting and wireless sensors: A review of recent developments, Sensor Rev. 29 (2009) 194-199.
DOI: 10.1108/02602280910967594
Google Scholar
[3]
N. Rajic, Development of an Active Smart Patch for Aircraft Repair, in C. Boller, F. K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 107, John Wiley & Sons, (2009).
DOI: 10.1002/9780470061626.shm135
Google Scholar
[4]
C. Davis, W. Baker, S. D. Moss, S. C. Galea, R. Jones, In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement, Proc. SPIE 4934 (2002) 140-149.
DOI: 10.1117/12.471965
Google Scholar
[5]
S. Galea, I. Powlesland, Caribou Loads Flight Survey Using A Rapid Operational Loads Measurement Approach, Mater. Forum 33 (2009) 100-109.
Google Scholar
[6]
S. C. Galea, T. Trueman, L. Davidson, P. Trathen, B. Hinton, A. Wilson, T. Muster, I. Cole, P. Corrigan, D. Price, Aircraft structural diagnostic and prognostic health monitoring for corrosion prevention and control, in C. Boller, F.K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 112, John Wiley & Sons, (2009).
DOI: 10.1002/9780470061626.shm147
Google Scholar
[7]
S. C. Galea, S. Van der Velden, S. Moss, I. Powlesland, On the Way to Autonomy: the Wireless-interrogated and Self-powered Smart Patch, System, in C. Boller, F.K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 76, John Wiley & Sons, (2009).
DOI: 10.1002/9780470061626.shm093
Google Scholar
[8]
L. Tang, Y. Yang, C. K. Soh, Toward broadband vibration-based energy harvesting, J. Intell. Mat. Syst. Str. 21 (2010) 1867-1897.
Google Scholar
[9]
S. Moss, I. Powlesland, S. Galea, G. Carman, Vibro-impacting power harvester, Proc. SPIE 7643 (2010) 76431A.
DOI: 10.1117/12.848897
Google Scholar
[10]
S. Moss, I. Powlesland, M. Konak, A. Barry, S. Galea, G. Carman, Broad-Band VibroImpacting Energy Harvester, Mat. Sci. Forum 654-656 (2010) 2799-2802.
DOI: 10.4028/www.scientific.net/msf.654-656.2799
Google Scholar
[11]
V. Babitsky, Theory of vibro-impact systems and applications, Foundation of engineering mechanics, Springer, (1998).
Google Scholar
[12]
H. S. Kim, J. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration, Int. J. Precis. Eng. Man. 12 (2011) 1129-1141.
DOI: 10.1007/s12541-011-0151-3
Google Scholar
[13]
S. Moss, A. Barry, I. Powlesland, S. Galea, G.P. Carman, A low profile vibro-impacting power harvester with symmetrical stops, App. Phys. Lett. 97 (2010) 234101.
DOI: 10.1063/1.3521265
Google Scholar
[14]
S. Moss, A. Barry, I. Powlesland, S. Galea, G.P. Carman, A broad-band vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops, Smart Mater. Struct. 20 (2011) 045013.
DOI: 10.1088/0964-1726/20/4/045013
Google Scholar
[15]
S. Moss, J. McLeod, I. Powlesland and S. Galea, A bi-axial magnetoelectric vibration energy harvester, Sens. Act. A Phys. 175 (2012) 165-168.
DOI: 10.1016/j.sna.2011.12.023
Google Scholar
[16]
S. Moss, U.S. Patent application 61/482, 496. (2012).
Google Scholar
[17]
S. Moss, J. McLeod, S. Galea, Wideband vibro-impacting vibration energy harvesting using magnetoelectric transduction, J. Intel. Mat. Syst. Str. (2012) DOI: 10. 1177/1045389X12443598.
DOI: 10.1177/1045389x12443598
Google Scholar
[18]
J. Ryu, A.V. Carazo, K. Uchino, H. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites, Jpn. J. Appl. Phys. 140 (2001) 4948-4951.
DOI: 10.1143/jjap.40.4948
Google Scholar
[19]
V. Piefort, A. Preumont, Finite element modeling of piezoelectric structures Samtech User's Conference, Paris, France, (2001).
Google Scholar
[20]
The Institute of Electrical and Electronics Engineers, Inc. IEEE standard on magnetostrictive materials: Piezomagnetic nomenclature. Technical Report IEEE Std 319-1990 (Revision of IEEE Std 319-1971) 345 The Institute of Electrical and Electronics Engineers, Inc. New York, New York, (1990).
DOI: 10.1109/mspec.1971.5218414
Google Scholar
[21]
Ferroperm Piezoceramics A/S, Ferroperm Piezoceramics, company catalogue, Kvistgard, Denmark, (2003).
Google Scholar
[22]
A.E. Clark, US Patent 4, 158, 368. (1979).
Google Scholar
[23]
J. M. Bakhashwain, M. Sunar, S. J. Hyder, Finite element modeling of magnetostrictive smart structures, The Arab. J. Sci. Eng. 29 (2004) 27-138.
Google Scholar
[24]
Comsol 2009 example model, viewed February 2011 <http: /www. comsol. com/showroom/ documentation/model/6063/>.
Google Scholar
[25]
E. W. Lee, Magnetostriction and magnetomechanical effects, Rep. Prog, Phys. 18 (1955) 184.
Google Scholar
[26]
S. Chikazumi, Physics of Ferromagnetism, second ed., Oxford University Press, New York, (1997).
Google Scholar
[27]
Comsol, AC/DC Module Users Guide, Version 3. 5a, Stockholm, Sweden, (2008).
Google Scholar
[28]
L. W. Nagel, D. O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, (1973).
Google Scholar
[29]
S. D. Moss, J. E. McLeod, I. J. Powlesland, S. C. Galea, Bi-axial vibration energy harvesting, DSTO-TR-2649, (2012).
Google Scholar
[30]
J. Morgan, S. Townley, G. Kemble, R. Smith, Measurement of physical and mechanical properties of beeswax, Mat. Sci. and Tech. 18 (2002) 463-467.
DOI: 10.1179/026708302225001714
Google Scholar
[31]
N. Rajic, A numerical model for the piezoelectric transduction of stress waves, Smart. Mater. Struct. 15 (2006) 1151-1164.
DOI: 10.1088/0964-1726/15/5/001
Google Scholar