Multiphysics Modelling and Experimental Validation of a Bi-Axial Magnetoelectric Vibration Energy Harvester

Article Preview

Abstract:

This paper reports on the multiphysics modelling of a bi-axial vibration energy harvesting (VEH) approach, with experimental validation of the model predictions. The authors have developed a harvester able to generate voltage under bi-axial vibrations. The harvesting approach is based on a magnetoelectric (ME) transducer that is positioned between a fixed magnet and oscillating ball bearing, which steers a changing magnetic field through the transducer to generate a voltage. The transducer combines magnetostrictive and piezoelectric properties to convert magnetic potential into electrical energy. Analytical modelling of this phenomenon is difficult due to the highly coupled nature of this interaction, so Comsol multiphysics software is used to make predictions of output using the finite element method (FEM). A peak open-circuit harvester voltage of 39.4 V is predicted for a ball bearing oscillating with 4.5 mm amplitude, agreeing reasonably well with measured harvester voltage of approximately 35 V. The modelling is applied to a two-dimensional representation of the system, which is shown to be sufficient for a basic understanding of the highly coupled nature of interactions, and a basis for optimising the magnetoelectric vibration energy harvesting approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-476

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Piguet, Low-Power Electronics Design, Computer Engineering Series, CRC Press, (2005).

Google Scholar

[2] R. Bogue, Energy harvesting and wireless sensors: A review of recent developments, Sensor Rev. 29 (2009) 194-199.

DOI: 10.1108/02602280910967594

Google Scholar

[3] N. Rajic, Development of an Active Smart Patch for Aircraft Repair, in C. Boller, F. K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 107, John Wiley & Sons, (2009).

DOI: 10.1002/9780470061626.shm135

Google Scholar

[4] C. Davis, W. Baker, S. D. Moss, S. C. Galea, R. Jones, In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement, Proc. SPIE 4934 (2002) 140-149.

DOI: 10.1117/12.471965

Google Scholar

[5] S. Galea, I. Powlesland, Caribou Loads Flight Survey Using A Rapid Operational Loads Measurement Approach, Mater. Forum 33 (2009) 100-109.

Google Scholar

[6] S. C. Galea, T. Trueman, L. Davidson, P. Trathen, B. Hinton, A. Wilson, T. Muster, I. Cole, P. Corrigan, D. Price, Aircraft structural diagnostic and prognostic health monitoring for corrosion prevention and control, in C. Boller, F.K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 112, John Wiley & Sons, (2009).

DOI: 10.1002/9780470061626.shm147

Google Scholar

[7] S. C. Galea, S. Van der Velden, S. Moss, I. Powlesland, On the Way to Autonomy: the Wireless-interrogated and Self-powered Smart Patch, System, in C. Boller, F.K. Chang, Y. Fujino (Eds. ), Encyclopedia of Structural Health Monitoring, Chpt. 76, John Wiley & Sons, (2009).

DOI: 10.1002/9780470061626.shm093

Google Scholar

[8] L. Tang, Y. Yang, C. K. Soh, Toward broadband vibration-based energy harvesting, J. Intell. Mat. Syst. Str. 21 (2010) 1867-1897.

Google Scholar

[9] S. Moss, I. Powlesland, S. Galea, G. Carman, Vibro-impacting power harvester, Proc. SPIE 7643 (2010) 76431A.

DOI: 10.1117/12.848897

Google Scholar

[10] S. Moss, I. Powlesland, M. Konak, A. Barry, S. Galea, G. Carman, Broad-Band VibroImpacting Energy Harvester, Mat. Sci. Forum 654-656 (2010) 2799-2802.

DOI: 10.4028/www.scientific.net/msf.654-656.2799

Google Scholar

[11] V. Babitsky, Theory of vibro-impact systems and applications, Foundation of engineering mechanics, Springer, (1998).

Google Scholar

[12] H. S. Kim, J. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration, Int. J. Precis. Eng. Man. 12 (2011) 1129-1141.

DOI: 10.1007/s12541-011-0151-3

Google Scholar

[13] S. Moss, A. Barry, I. Powlesland, S. Galea, G.P. Carman, A low profile vibro-impacting power harvester with symmetrical stops, App. Phys. Lett. 97 (2010) 234101.

DOI: 10.1063/1.3521265

Google Scholar

[14] S. Moss, A. Barry, I. Powlesland, S. Galea, G.P. Carman, A broad-band vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops, Smart Mater. Struct. 20 (2011) 045013.

DOI: 10.1088/0964-1726/20/4/045013

Google Scholar

[15] S. Moss, J. McLeod, I. Powlesland and S. Galea, A bi-axial magnetoelectric vibration energy harvester, Sens. Act. A Phys. 175 (2012) 165-168.

DOI: 10.1016/j.sna.2011.12.023

Google Scholar

[16] S. Moss, U.S. Patent application 61/482, 496. (2012).

Google Scholar

[17] S. Moss, J. McLeod, S. Galea, Wideband vibro-impacting vibration energy harvesting using magnetoelectric transduction, J. Intel. Mat. Syst. Str. (2012) DOI: 10. 1177/1045389X12443598.

DOI: 10.1177/1045389x12443598

Google Scholar

[18] J. Ryu, A.V. Carazo, K. Uchino, H. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites, Jpn. J. Appl. Phys. 140 (2001) 4948-4951.

DOI: 10.1143/jjap.40.4948

Google Scholar

[19] V. Piefort, A. Preumont, Finite element modeling of piezoelectric structures Samtech User's Conference, Paris, France, (2001).

Google Scholar

[20] The Institute of Electrical and Electronics Engineers, Inc. IEEE standard on magnetostrictive materials: Piezomagnetic nomenclature. Technical Report IEEE Std 319-1990 (Revision of IEEE Std 319-1971) 345 The Institute of Electrical and Electronics Engineers, Inc. New York, New York, (1990).

DOI: 10.1109/mspec.1971.5218414

Google Scholar

[21] Ferroperm Piezoceramics A/S, Ferroperm Piezoceramics, company catalogue, Kvistgard, Denmark, (2003).

Google Scholar

[22] A.E. Clark, US Patent 4, 158, 368. (1979).

Google Scholar

[23] J. M. Bakhashwain, M. Sunar, S. J. Hyder, Finite element modeling of magnetostrictive smart structures, The Arab. J. Sci. Eng. 29 (2004) 27-138.

Google Scholar

[24] Comsol 2009 example model, viewed February 2011 <http: /www. comsol. com/showroom/ documentation/model/6063/>.

Google Scholar

[25] E. W. Lee, Magnetostriction and magnetomechanical effects, Rep. Prog, Phys. 18 (1955) 184.

Google Scholar

[26] S. Chikazumi, Physics of Ferromagnetism, second ed., Oxford University Press, New York, (1997).

Google Scholar

[27] Comsol, AC/DC Module Users Guide, Version 3. 5a, Stockholm, Sweden, (2008).

Google Scholar

[28] L. W. Nagel, D. O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, (1973).

Google Scholar

[29] S. D. Moss, J. E. McLeod, I. J. Powlesland, S. C. Galea, Bi-axial vibration energy harvesting, DSTO-TR-2649, (2012).

Google Scholar

[30] J. Morgan, S. Townley, G. Kemble, R. Smith, Measurement of physical and mechanical properties of beeswax, Mat. Sci. and Tech. 18 (2002) 463-467.

DOI: 10.1179/026708302225001714

Google Scholar

[31] N. Rajic, A numerical model for the piezoelectric transduction of stress waves, Smart. Mater. Struct. 15 (2006) 1151-1164.

DOI: 10.1088/0964-1726/15/5/001

Google Scholar