Numerical Study on Thermal Boundary Resistance and Conductive Properties of Cu/Al Interface

Article Preview

Abstract:

In this paper, the thermal boundary resistance and conductive properties of Cu/Al interface are investigated by using first-principles calculations based on density functional theory (DFT) with considering the pressure influence. Based on the atomic model of Cu/Al interface the simulation results show that the lattice parameters for both Cu and Al are sensitive to pressure and density states of Cu/Al interface increase as pressure increases from 0 to 5 GPa. Although Cu and Al have the same atomic structure, the significant differences of the density of phonon states lead to the thermal resistance that exists at the Cu/Al interface. At the Cu/Al interface, Cu and Al atoms can diffuse into each other and form an alloy-like interfacial region. The change of the copper component in the alloy can considerably affect the conductive properties of Cu/Al interface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1190-1195

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Radhakrishnan, P. M. Adams, and D. M. Speckman, Thin Solid Films 2000, pp.131-138.

Google Scholar

[2] J. Moritz, G. Vinai, S. Auffret, and B. Dieny, J. Appl. Phys 2011, pp.083902-4.

Google Scholar

[3] O. Auciello, J. Birrell, J. A. Carlisile, J. E. Gerbi, X. Ch. Xiao, B. Peng, and H. D. Espinosa, J. Phys.: Condens 2004, pp.539-552.

Google Scholar

[4] T. Hirayama, N. Hishida, H. Ishida, and H. Yabe, Microsyst. Technol 2005, pp.751-757.

Google Scholar

[5] NingboLiao,Ping Yang, Miao Zhang, Wei Xue, Materials Science and Engineering: A 2010, pp.6076-6081.

Google Scholar

[6] Gao Xue, Zhang Yue, Shang Jia-Xiang, Chin. Phys. Lett 2011, pp.110502-3.

Google Scholar

[7] Yefei Li, Yimin Gao, Bing Xiao, Ting Min, Shengqiang Ma, Dawei Yi, Applied Surface Science 2011, p.5671–5678.

Google Scholar

[8] Daw MS, Baskes MI. Phys Rev Lett 1983, p.1285–1288.

Google Scholar

[9] Baskes MI. Phys Rev B 1992, p.2727–2742.

Google Scholar

[10] MI Baskes, R A Johnson, and Modelling Simul. Mater. Sci. Eng 1994, pp.147-163.

Google Scholar

[11] Yang Fan, Liu YuWen, Ou LiHui, Wang Xin, and Chen ShengLi, Science China Chemistry 2010, p.411–418.

Google Scholar

[12] JP Perdew, K Burke, Y Wang, Phys. Rev. B 1996, pp.16533-16539.

Google Scholar

[13] G. Makov and M. c. Payne, Phys. Rev. B 1995, pp.4014-4022.

Google Scholar