Analysis of Intensity Variation of Laser in Resonator Micro-Optic Gyro

Article Preview

Abstract:

The paper describes the basic principle and structure of the resonator micro-optic gyro (RMOG), the influence of intensity variation of laser is analyzed for the first time. The relationship between the light intensity input the integrated optical resonator (IOR) and the slope at working range is simulated and analyzed by the optical field overlapping method. The amplitudes of the output square waveforms with different zero biases are simulated and analyzed. The experimental setup is constructed and tested, the test result shows that in order to reach the limited ultimate sensitivity of 15.5 deg/h, it is necessary to restrict the zero bias within 8.1 deg/s under open-loop output scheme.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

227-231

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.H. Lefevre, The Fiber-Optic Gyroscope, National Defense Industry Press, Beijing, 2002.

Google Scholar

[2] H. Mao, H. Ma, Z. Jin, Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique, Opt. Express. (2011) 4632-4643.

DOI: 10.1364/oe.19.004632

Google Scholar

[3] H. K. Hsiao, K. A. Winick, Planar glass waveguide ring resonators with gain, Opt. Express 15. 26 (2007) 17783–17797.

DOI: 10.1364/oe.15.017783

Google Scholar

[4] K. Iwatsuki, K. Hotate, M. Higashiguchi, Backscattering in an optical passive ring-resonator gyro: Experiment, Appl. Opt. 25. 23 (1986) 4448-4451.

DOI: 10.1364/ao.25.004448

Google Scholar

[5] Zarinetchi F., Ezekiel S, Observation of lock-in behavior in a passive resonator gyroscope, Optics Letters. 11. 6 (1986) 401-403.

DOI: 10.1364/ol.11.000401

Google Scholar

[6] H. Ma, X. Yu, Z. Jin, Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers , Optics Letters. 37. 16 (2012) 3342-3344.

DOI: 10.1364/ol.37.003342

Google Scholar

[7] X. Wang, Z. He, K. Hotate, Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices, Optics Letters. 18. 2 (2010) 1677-1683.

DOI: 10.1364/oe.18.001677

Google Scholar

[8] R.A. Bergh, H.C. Lefevre, S.H. Jhaw, Compensation of the optical Kerr effect in fiber-optic gyroscopes, Optics Letters. 7. 6 (1982) 282-284.

DOI: 10.1364/ol.7.000282

Google Scholar

[9] K. Iwatsuki, K.Hotate, M. Higashiguchi, Kerr effect in an optical passive ring-resonator gyro , Journal of Lightwave Technology. 4. 6 (1986) 645-651.

DOI: 10.1109/jlt.1986.1074770

Google Scholar

[10] D. Ying, M.S. Demokan, X. Zhang, Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation, Appl. Opt. 19. 3 (2010) 529-535.

DOI: 10.1364/ao.49.000529

Google Scholar

[11] D.M. Shupe, Thermally induced nonreciprocity in fiber-optic interferometer, Appl. Opt. 19. 5 (1980) 654-655.

DOI: 10.1364/ao.19.000654

Google Scholar

[12] S. Blin, H.K. Kim, M. J. Digonnet, Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber, Journal of Lightwave Technology. 14 (2006) 645-651.

DOI: 10.1109/jlt.2006.889658

Google Scholar

[13] D. Ying, H. Ma, Z Jin, Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique, Optics Communications. 281 (2008) 5340–5343.

DOI: 10.1016/j.optcom.2008.07.042

Google Scholar

[14] L. Hong, C. Zhang, L. Feng, Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro, Chin.Phys. Lett. 29. 1 (2012) 014211.

DOI: 10.1088/0256-307x/29/1/014211

Google Scholar