Microwave Synthesis of SnO2/Fe2O3 Nanocomposites for Lithium-Ion Batteries

Article Preview

Abstract:

SnO2/Fe2O3 nanocomposites were successfully synthesized by microwave heating. SEM-EDX and XRD analyses and Raman spectroscopy revealed that nanosized SnO2 was deposited on rod-shaped α-Fe2O3 crystals. The SnO2/Fe2O3 nanocomposites worked as a rechargeable electrode material. The initial insertion capacity of the SnO2/Fe2O3 nanocomposites achieved 1522 mAh/g that is larger than the theoretical capacity, and the rechargeable capacity at 10 cycles was 862 mAh/g. The initial charge-discharge reaction of the SnO2/Fe2O3 nanocomposites was caused by the redox reactions of SnO2 and Fe2O3 and alloying-dealloying reaction of Sn with Li.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-106

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science, 276 (1995) 1395.

Google Scholar

[2] I. A. Courtney, J. R. Dahn, J. Electrochem. Soc., 144 (1997) (2045).

Google Scholar

[3] O. Mao, R.A. Dunlap, J.R. Dahn, J. Electrochem. Soc., 146 (1999) 405.

Google Scholar

[4] N. Kijima, Y. Takahashi, H. Hayakawa, J. Awaka, J. Akimoto, Chem. Lett. 36 (2007) 568.

Google Scholar

[5] N. Kijima, M. Yoshinaga, J. Awaka, J. Akimoto, Solid State Ionics 192 (2011) 293.

DOI: 10.1016/j.ssi.2010.07.012

Google Scholar

[6] M. Yoshinaga, N. Kijima, S. Wakahara, J. Akimoto, Key Eng. Mater. 485 (2011) 127.

Google Scholar

[7] M. Yoshinaga, N. Kijima, S. Wakahara, J. Akimoto, Chem. Lett. 40 (2011) 414.

Google Scholar

[8] M. Salis, P.C. Ricci, G. Cappelletti, A. Anedda, Chem. Phys. Lett. 496 (2010) 109.

Google Scholar

[9] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. -B. Leriche, J. -M. Tarascon, J. Electrochem. Soc., 150 (2003) A133.

DOI: 10.1149/1.1528941

Google Scholar

[10] J. Jamnik and J. Maier, Phys. Chem. Chem. Phys., 5 (2003) 5215.

Google Scholar