Preparation of Bismuth Copper Based Perovskite-Type Ceramics and their Piezoelectric Properties

Article Preview

Abstract:

The structural, and dielectric and piezoelectric properties of 0.3BaTiO3 - 0.1x (x= Bi (Mg1/2Ti1/2)O3, Bi (Cu1/2Ti1/2)O3, Bi (Cu2/3Nb1/3)O3, (Bi1/2K1/2)(Cu1/3Nb2/3)O3) 0.6BiFeO3 ceramics were studied. The relative density of all the samples was more than 94 %. A single perovskite phase was obtained for the samples, and the crystal structure was pseudo-cubic. The Curie temperature of x=Bi (Mg1/2Ti1/2)O3 and Bi (Cu1/2Ti1/2)O3 system ceramics was higher than 400 °C. The apparent piezoelectric constant d33* of x=Bi (Mg1/2Ti1/2)O3, Bi (Cu1/2Ti1/2)O3, Bi (Cu2/3Nb1/3)O3 and (Bi1/2K1/2)(Cu1/3Nb2/3)O3 system ceramics was 311, 212, 75 and 70 pm/V, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-88

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. Tressler, S. Alkoy, A. Dogan, R. E. Newnham: Applied Science and Manufacturing Composites A 30 (1999) 477- 482.

DOI: 10.1016/s1359-835x(98)00137-7

Google Scholar

[2] K. Uchinoin, Present status of piezoelectric/electrostrictive actuators and remaining problems: Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, Boston (1997) Chapter 10.

DOI: 10.1007/978-1-4613-1463-9_10

Google Scholar

[3] Elena Aksel, Jacob L. Jones: 10 Sensors (2010) 1935-(1954).

Google Scholar

[4] C. A. Randall, A. Kelnberger, G. Y. Yang, R. E. Eitel, T. R. Shrout: Journal of Electroceramics 14 (2005) 177- 191.

Google Scholar

[5] B. Jaffe, W. R. Cook, H. Jaffe: London And New York, Academic Press (1971) 317.

Google Scholar

[6] N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M. A. Marquardt, D. P. Cann: Jornal of Electroceramics 16 (2006) 141-149.

Google Scholar

[7] Richard E. EITEL, Clive A. RANDALL, Thomas R. SHOROUT, Paul W. REHRIG, Wes HACKENBERGER, Seung-EekPARK: Jpn.J. Appl. Phs. 40 (2001) 5999-6002.

Google Scholar

[8] Akifumi Morishita, Yuuki Kitanaka, Makoto Izumi, Yuji Noguchi, Masaru Miyayama: Key Engineering Materials 445 (2010) 7.

Google Scholar

[9] M. Demartin Maeder and D. Damjanovic, in Piezoelectric Materials in Devices, ed. N. Setter, (Lausanne, 2002) 389.

Google Scholar

[10] Serhiy O. Leontsev, Richard E. Eitel: Journal of the American Ceramic Society 92 (2009) 2957- 2961.

Google Scholar

[11] I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, S. Wada: J. Appl. Phys. 50 (2011) 09ND07.

DOI: 10.7567/jjap.50.09nd07

Google Scholar

[12] A. Shimamura, I. Fujii, N. Kumada, K. Nakashima, M. Azuma, Y. Kuroiwa, S. Kawada, M. Kimura, S. Wada: Key Engineering Materials 485 (2011) 81-84.

DOI: 10.4028/www.scientific.net/kem.485.81

Google Scholar

[13] Peter Comba, Marc Zimmer: Inorganic Chemistry 33 (1994) 5368-5369.

Google Scholar