Preparation of Potassium Niobate-Coated Barium Titanate Accumulation Ceramics by Solvothermal Synthesis and Enhancement of Piezoelectric Property

Article Preview

Abstract:

Barium titanate (BaTiO3, BT) - potassium niobate (KNbO3, KN) nanostructured ceramics with artificial morphotropic phase boundary (MPB) structure were successfully prepared at temperatures below 230 °C by solvothermal method. Various characterizations suggested that the BT-KN nanostructured ceramics exhibited a porosity of around 30 % and heteroepitaxial interface between BT and KN. Their dielectric and piezoelectric properties were measured at room temperature, and the dielectric constant and apparent piezoelectric constant estimated from slope of strain and electric field curve was 370 and 136 pm/V, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-80

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Demartin Maeder and D. Damjanovic: Piezoelectric Materials in Devices, ed. N. Setter (N. Setter, Lausanne, 2002) p.389.

Google Scholar

[2] B. Jaffe, W. R. Cook, Jr., and H. Jaffe: Piezoelectric Ceramics (Academic Press, New York, 1971) p.135.

Google Scholar

[3] F. Jona and G. Shirane: Ferroelectric Crystals (Dover, New York, 1993) p.108.

Google Scholar

[4] Y. Zu: Ferroelectric Materials and their Applications (North-Holland, Amsterdam, 1991) p.101.

Google Scholar

[5] K. A. Schönau, L. A. Schmitt, M. Knapp, H. Fuess, R. -A. Eichel, H. Kungl and M. J. Hoffmann: Phys. Rev. B Vol. 75 (2007), 184117.

Google Scholar

[6] Y. Ishibashi, and M. Iwata: Jpn. J. Appl. Phys. Vol. 37 (1998), p. L985.

Google Scholar

[7] H. Fu, and R. E. Cohen: Nature Vol. 403 (2000), p.281.

Google Scholar

[8] S. Wada, S. Shimizu, K. Yamashita, I. Fujii, K. Nakashima, N. Kumada, C. Moriyoshi, Y. Kuroiwa, D. Tanaka and M. Furukawa, Jpn. J. Appl. Phys. Vol. 50 (2011), 09NC08.

DOI: 10.7567/jjap.50.09nc08

Google Scholar

[9] T. Hoshina, S. Wada, Y. Kuroiwa and T. Tsurumi: Appl. Phys. Lett. Vol. 93 (2008), 192914.

DOI: 10.1063/1.3027067

Google Scholar

[10] T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto and T. Tsurumi: Jpn. J. Appl. Phys. Vol. 47 (2008), p.7607.

DOI: 10.1143/jjap.47.7607

Google Scholar

[11] T. Goto, K. Nakashima, I. Fujii, Y. Kuroiwa, Y. Makita and S. Wada: Key Eng. Mater. Vol. 485 (2011), p.305.

Google Scholar

[12] S. Wada, Y. Mase, S. Shimizu, K. Maeda, I. Fujii, K. Nakashima, P. Pulpan and N. Miyajima: Key Eng. Mater. Vol. 485 (2011), p.61.

DOI: 10.4028/www.scientific.net/kem.485.61

Google Scholar

[13] A. Yazawa, T. Hoshina, H. Kakemoto, T. Tsurumi and S. Wada: Key Eng. Mater. Vol. 320 (2006), p.127.

Google Scholar

[14] S. Wada, M. Nitta, N. Kumada, D. Tanaka, M. Furukawa, S. Ohno, C. Moriyoshi and Y. Kuroiwa: Jpn. J. Appl. Phys. Vol. 47 (2008), p.7678.

DOI: 10.1143/jjap.47.7678

Google Scholar

[15] K. Yamashita, S. Shimizu, I. Fujii, K. Nakashima, N. Kumada, T. Tsukada and S. Wada: Key Eng. Mater. Vol. 485 (2011), p.39.

Google Scholar