[1]
S.S. Kessler, S.M. Spearing and C. Soutis, Damage detection in composite materials using Lamb wave methods, Smart Materials and Structures. 11 (2002) 269-278.
DOI: 10.1088/0964-1726/11/2/310
Google Scholar
[2]
W.J. Staszewski, Structural health monitoring using guided ultrasonic waves, in: J. Holnicki-Szulc and C.A. Mota Soares (Eds. ), Advances in Smart Technologies in Structural Engineering, Springer, Berlin, 2004, pp.117-162.
DOI: 10.1007/978-3-662-05615-8_6
Google Scholar
[3]
Z. Su, L. Ye and Y. Lu, Guided Lamb waves for identification of damage in composite structures: A review, Journal of Sound and Vibration. 295 (2006) 753-780.
DOI: 10.1016/j.jsv.2006.01.020
Google Scholar
[4]
A.J. Croxford, P.D. Wilcox, B.W. Drinkwater and G. Konstantinidis, Strategies for guided-wave structural health monitoring, Proc. R. Soc. A. 463 (2007) 2961-2981.
DOI: 10.1098/rspa.2007.0048
Google Scholar
[5]
A. Raghavan and C.E.S. Carlos, Review of guided-wave structural health monitoring, The Shock and Vibration Digest. 39 (2007) 91-114.
DOI: 10.1177/0583102406075428
Google Scholar
[6]
W.J. Staszewski, B.C. Lee and R. Traynor, Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry, Measurement Science and Technology. 18 (2007) 727-739.
DOI: 10.1088/0957-0233/18/3/024
Google Scholar
[7]
H. Sohn, Effects of environmental and operational variability on structural health monitoring, Phil. Trans. R. Soc. A. 365 (2007) 539-560.
DOI: 10.1098/rsta.2006.1935
Google Scholar
[8]
F. Lanza di Scalea and S. Salamone, Temperature effects in ultrasonic Lamb wave structural health monitoring systems, Journal of the Acoustical Society of America. 124 (2008) 161-174.
DOI: 10.1121/1.2932071
Google Scholar
[9]
G. Konstantinidis, B.W. Drinkwater and P.D. Wilcox, The temperature stability of guided wave structural health monitoring systems, Smart Materials and Structures. 15 (2006) 967-976.
DOI: 10.1088/0964-1726/15/4/010
Google Scholar
[10]
A. Marzania and S. Salamone, Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors, Mechanical Systems and Signal Processing. 30 (2012) 204-217.
DOI: 10.1016/j.ymssp.2011.11.003
Google Scholar
[11]
R.F. Engle and C.W.J. Granger, Cointegration and error-correction: representation, estimation, and testing, Econometrica. 55 (1987) 251-276.
DOI: 10.2307/1913236
Google Scholar
[12]
Q. Chen, U. Kruger and A.Y.T. Leung, Cointegration testing method for monitoring non-stationary processes, Ind. Eng. Chem. Res. 48 (2009) 3533-3543.
DOI: 10.1021/ie801611s
Google Scholar
[13]
E.J. Cross and K. Worden, Approaches to nonlinear cointegration with a view towards applications in SHM, Journal of Physics: Conference Series. 305 (2011) 012069.
DOI: 10.1088/1742-6596/305/1/012069
Google Scholar
[14]
E.J. Cross, K. Worden and Q. Chen, Cointegration: A novel approach for the removal of environmental trends in structural health monitoring data, Proc. R. Soc. A. 467 (2011) 2712-2732.
DOI: 10.1098/rspa.2011.0023
Google Scholar
[15]
K. Worden, E.J. Cross and A. Kyprianou, Cointegration and nonstationarity in the context of multiresolution analysis, Journal of Physics: Conference Series. 305 (2011) 012004.
DOI: 10.1088/1742-6596/305/1/012004
Google Scholar
[16]
P.B. Dao and W.J. Staszewski, Lamb wave based structural damage detection: A cointegration approach for temperature effect compensation. In Proceedings of the 23rd International Conference on Adaptive Structures and Technologies (ICAST 2012), Nanjing, China, 11-13 October (2012).
DOI: 10.1088/0964-1726/22/9/095002
Google Scholar
[17]
P.B. Dao and W.J. Staszewski, Cointegration approach for temperature effect compensation in Lamb wave based damage detection: submitted to Smart Materials and Structures (2013).
DOI: 10.1088/0964-1726/22/9/095002
Google Scholar
[18]
M. Golder, Time series models, Lecture Note on Advanced Quantitative Analysis, (2008).
Google Scholar
[19]
E. Zivot and J. Wang, Modeling Financial Time Series with S-PLUS, second ed., Springer, New York, (2006).
Google Scholar
[20]
D. Dickey and W. Fuller, Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica. 49 (1981) 1057-1072.
DOI: 10.2307/1912517
Google Scholar
[21]
S. Johansen, Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control. 12 (1988) 231-254.
DOI: 10.1016/0165-1889(88)90041-3
Google Scholar
[22]
B.C. Lee, G. Manson and W.J. Staszewski, Environmental effects on Lamb wave responses from piezoceramic sensors, Materials Science Forum: Modern Practice in Stress and Vibration Analysis. 440-441 (2003) 195-202.
DOI: 10.4028/www.scientific.net/msf.440-441.195
Google Scholar
[23]
P. Kijanka, R. Radecki, P. Packo, W.J. Staszewski and T. Uhl, GPU-based local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation used for damage detection, Smart Materials and Structures, 22 (2013).
DOI: 10.1088/0964-1726/22/3/035014
Google Scholar
[24]
The Mathworks Inc., The Wavelet Toolbox, (2006).
Google Scholar
[25]
M.M.R. Taha, A. Noureldin, J.L. Lucero and T.J. Baca, Wavelet transform for structural health monitoring: A compendium of uses and features, Structural Health Monitoring. 5 (2006) 267-295.
DOI: 10.1177/1475921706067741
Google Scholar