Development of Changeable Young's Modulus with Good Mechanical Properties in β-Type Ti-Cr-O Alloys

Article Preview

Abstract:

A novel β-type titanium alloy with a changeable Youngs modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, should be developed in order to satisfy the conflicting requirements of both the patients and surgeons in spinal fixation operations. In this study, the oxygen content in ternary Ti-11Cr-O alloys was optimized in order to achieve a large changeable Young's modulus with good mechanical properties for spinal fixation applications. The increase in Youngs moduli of all the examined alloys by cold rolling is attributed to the deformation-induced ω-phase transformation which is suppressed by oxygen. Among the examined alloys, the Ti-11Cr-0.2O alloy exhibits the largest changeable Youngs modulus and a high tensile strength with an acceptable plasticity under both solution-treated (ST) and cold-rolled (CR) conditions. Therefore, the Ti-11Cr-0.2O alloy, which shows a good balance among a changeable Youngs modulus, high tensile strength and good plasticity, is considered a potential candidate for spinal fixation applications.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

453-460

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4. 6Zr, Biomaterials. 24 (2003) 2673-2683.

DOI: 10.1016/s0142-9612(03)00069-3

Google Scholar

[2] Rho JY, Tsui TY, Pharr GM, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials. 18 (1997) 1325-1330.

DOI: 10.1016/s0142-9612(97)00073-2

Google Scholar

[3] N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy, J Mater Sci. 19 (2008) 1581-1586.

DOI: 10.1007/s10856-008-3372-y

Google Scholar

[4] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new b type titanium alloys for implant materials, Mater Sci Eng A. 243 (1998) 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[5] H. Matsumoto, S. Watanabe, S. Hanada, Beta TiNbSn alloys with low Young's modulus and high strength, Mater Trans. 46 (2005) 1070-1078.

DOI: 10.2320/matertrans.46.1070

Google Scholar

[6] Y.L. Hao, S.J. Li, S.Y. Sun, R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys, Mater Sci Eng A. 441 (2006) 112-118.

DOI: 10.1016/j.msea.2006.09.051

Google Scholar

[7] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue and cytocompatibility of new Ti alloys without Al and V, Biomaterials. 19 (1998) 1197-1215.

DOI: 10.1016/s0142-9612(97)00235-4

Google Scholar

[8] J.P. Steib, R. Dumas, D. Mitton, W. Skalli, Surgical correction of scoliosis by in situ contouring: a detorsion analysis, Spine. 29 (2004) 193-199.

DOI: 10.1097/01.brs.0000107233.99835.a4

Google Scholar

[9] M. Nakai, M. Niinomi, X.F. Zhao, X.L. Zhao, Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation, Mater Lett. 65 (2011) 688-690.

DOI: 10.1016/j.matlet.2010.11.006

Google Scholar

[10] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[11] X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimoto, T. Nakano, Optimization of Cr content of metastable b-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications, Acta Biomater. 8 (2012) 2392-2400.

DOI: 10.1016/j.actbio.2012.02.010

Google Scholar

[12] X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda, Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications, Acta Biomater. 8 (2012) 1990-(1997).

DOI: 10.1016/j.actbio.2012.02.004

Google Scholar

[13] X.L. Zhao, M. Niinomi, M. Nakai, G. Miyamoto, T. Furuhara, Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications, Acta Biomater. 7 (2011) 3230-3236.

DOI: 10.1016/j.actbio.2011.04.019

Google Scholar

[14] J.I. Qazi, B. Marquardt, L.F. Allard, H.J. Rack, Phase transformations in Ti-35Nb-7Zr-5Ta-(0. 06-0. 68)O alloys, Mater Sci Eng C. 25 (2005) 389-397.

DOI: 10.1016/j.msec.2005.01.022

Google Scholar

[15] J.C. Williams, D. de Fontaine, and N.E. Paton, The w-phase as an example of an unusual shear transformation, Metall Trans. 4 (1973) 2701-2708.

DOI: 10.1007/bf02644570

Google Scholar

[16] D. de Fontaine, N.E. Paton, and J.C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta Metall. 19 (1971) 1153-1162.

DOI: 10.1016/0001-6160(71)90047-2

Google Scholar

[17] X.L. Zhao, M. Niinomi, M. Nakai, T. Ishimoto, T. Nakano, Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants, Mater Sci Eng C. 31 (2011) 1436-1444.

DOI: 10.1016/j.msec.2011.05.013

Google Scholar

[18] H.H. Liu, M. Niinomi, M. Nakai, J. Hieda, b-type Ti-Cr-O alloys with large changeable Young's modulus and high strength for spinal fixation applications, submitted to Acta Biomaterialia.

DOI: 10.1016/j.actbio.2012.02.004

Google Scholar

[19] S. Hanada, O. Izumi, Correlation of tensile properties, deformation modes, and phase stability in commercial b-phase titanium alloys, Metall Trans A. 18 (1987) 265-271.

DOI: 10.1007/bf02825707

Google Scholar

[20] T. Furuta, S. Kuramoto, J.H. Hwang, K. Nishino, T. Saito, Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys, Mater Trans. 46 (2005) 3001-3007.

DOI: 10.2320/matertrans.46.3001

Google Scholar

[21] Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Evolution of deformation mechanisms of Ti-22. 4Nb-0. 73Ta-2Zr-1. 34O alloy during straining, Acta Mater. 58 (2010) 2778-2787.

DOI: 10.1016/j.actamat.2010.01.015

Google Scholar

[22] S. Banerjee, P. Mukhopadhyay, Transformations related to omega structures, in: R.W. Cahn (Editor), Phase Transformations: Examples from Titanium and Zirconium Alloys, Elsevier, Great Britain, 2007, pp.474-508.

DOI: 10.1016/s1470-1804(07)80059-9

Google Scholar