Finite Element Analysis on Real Contact Area Based on Fractal Characterization

Article Preview

Abstract:

No surface in engineering is absolutely smooth. It is important to analyze and calculate the real contact area for a better understanding of friction, wear, lubrication and thermal conductance. To obtain the accurate real contact area between rough surface and smooth surface, a rough-non-rigid-smooth surface contact finite element model is proposed in which the rough surface is characterized by fracture theory. In finite element modeling and analyzing process, MATLABEXCEL and AutoCAD are used to process data, and the smooth surface is considered to be non-rigid body. Compared with the traditional modeling, this method can obtain data quickly and is closer to the actual situation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 579-580)

Pages:

517-522

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Hertz: Journal für die reine und angewandte Mathematik. Vol. 92 (1882). pp.156-171. (In German).

DOI: 10.1515/9783112342404-004

Google Scholar

[2] K. L. Johnson: Contact Mechanics (Cambridge University Press, UK 1985).

Google Scholar

[3] G. G. Adams and M. Nosonovsky: Tribology International, Vol. 33 (2000), p.431–442.

Google Scholar

[4] J. A. Greenwood and J. B. P. Williamson: Proceedings of the Royal Society of London Series A, Vol. 295 (1966) No. 1442, pp.300-319.

Google Scholar

[5] J. A. Greenwood and J. H. Tripp: Proceedings of the Institution of Mechanical Engineers, Vol. 185 (1970) No. 1625, p.633.

Google Scholar

[6] J. I. McCool: Journal of Tribology, Vol. 122 (2000) No. 3, p.496.

Google Scholar

[7] A. Polycarpou and I. Etsion: Journal of Tribology, Vol. 121 (1999) No. 2, p.234.

Google Scholar

[8] R.L. Jackson and I. Green: Transactions of the ASME-F-Journal of Tribology, Vol. 127 (2005) No. 2, p.343.

Google Scholar

[9] Y. Zhao, Y. Lu and J. Jiang: Chinese Journal of Mechanical Engineering, Vol. 43 (2007) No. 3, p.95. (In Chinese).

Google Scholar

[10] R. S. Sayles and T. R. Thomas: Nature, Vol. 271 (1978), p.431.

Google Scholar

[11] Y. Morag and I. Etsion: Wear, Vol. 262 (2007) No. 5, p.624.

Google Scholar

[12] J. F. Archard: Proceedings of the Royal Society of London Series A, Vol. 243 (1957) No. 1233, p.190.

Google Scholar

[13] A. Majumdar and B. Bhushan: Journal of Tribology, Vol. 112 (1990) No. 2, p.205.

Google Scholar

[14] A. Majumdar and B. Bhushan: Journal of Tribology, Vol. 113 (1991) No. 1, pp.1-11.

Google Scholar

[15] L. Kogut and I. Etsion: Journal of Applied Mechanics, Vol. 69 (2002), p.657.

Google Scholar

[16] L. Kogut and I. Etsion: Tribology Transactions, Vol. 46 (2003) No. 3, p.383.

Google Scholar

[17] S. Kucharski, T. Klimczak, A. Polijaniuk and J. Kaczmarek: Wear, Vol. 177 (1994), pp.1-13.

DOI: 10.1016/0043-1648(94)90112-0

Google Scholar

[18] L. Pei, S. Hyun, J.F. Molinari and M. O. Robbins: Journal of the Mechanics and Physics of Solids, Vol. 53 (2005) No. 11, p.2385.

Google Scholar

[19] U. Sellgren, S. Björklund and S. Andersson: Wear, Vol. 254 (2003), p.1180.

Google Scholar

[20] V. A. Yastrebov, J. Durand, H. Proudhon and C. Georges: Comptes Rendus Mecanique, Vol. 339 (2011) No. 7, p.473.

Google Scholar

[21] S. Ge and S. Suo: Tribology, Vol. 17 (1997) No. 4, p.354. ( In Chinese).

Google Scholar

[22] S. Ge and K. Tonder: Tribology, Vol. 17 (1997) No. 1, p.73. (In Chinese).

Google Scholar