Polarization Switching Dynamics of Ferroelectric (Bi0.5Na0.5)TiO3 Single Crystals

Article Preview

Abstract:

Ferroelectric (Bi0.5Na0.5)TiO3 single crystals were grown by a top-seeded solution growth method at a high oxygen pressure of 0.9 MPa and their polarization switching dynamics were investigated at ex-situ electric fields along <100>c. Synchrotron radiation single-crystal X-ray diffraction analyses showed that a splitting of each reflection into four spots were clearly observed during polarization reversal. This splitting is associated with the polarization states with the spontaneous polarization vectors along four directions of equivalent <111>c It is concluded that the polarization reversal is achieved through non-180 ° (71 ° and 109 °) domain switching in the BNT crystals along <100>c.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-54

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Takenaka, K. Maruyama and K. Sakata: Jpn. J. Appl. Phys. 30 (1991), p.2236.

Google Scholar

[2] Y. Hiruma, T. Watanabe, H. Nagata and T. Takenaka: Jpn. J. Appl. Phys. 47 (2008), p.7659.

Google Scholar

[3] J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow and D. Damjanovic: J. Am. Ceram. Soc. 92 (2009), p.1153.

Google Scholar

[4] T. Takenaka and K. Sakata: Ferroelectrics 95 (1989), p.153.

Google Scholar

[5] F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi: Phys. Rev. B 81 (2010), 144124.

Google Scholar

[6] C. Ma, X. Tan, E. Dul'kin and M. Roth: J. Appl. Phys. 108 (2010), 104105.

Google Scholar

[7] J. J. Yao, L. Yan, W. W. Ge, L. A. Luo, J. F. Li, D. Viehland, Q. H. Zhang and H. S. Luo: Phys. Rev. B 83 (2011), 054107.

Google Scholar

[8] O. Elkechai, M. Manier and J. P. Mercurio: Phys. Status Solidi A 157 (1996), p.499.

Google Scholar

[9] A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki: Jpn. J. Appl. Phys. 38 (1999), p.5564.

Google Scholar

[10] K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka: Jpn. J. Appl. Phys. 45 (2006), p.4493.

Google Scholar

[11] V. A. Isupov: Ferroelectrics 315 (2005), p.123.

Google Scholar

[12] Y. Noguchi, T. Matsumoto and M. Miyayama: Jpn. J. Appl. Phys. 44 (2005), p. L570.

Google Scholar

[13] Y. Noguchi, M. Soga, M. Takahashi and M. Miyayama: Jpn. J. Appl. Phys. 44 (2005), p.6998.

Google Scholar

[14] Y. Kitanaka, Y. Noguchi and M. Miyayama: Phys. Rev. B 81 (2010), 094114.

Google Scholar

[15] Y. Noguchi, I. Tanabe, M. Suzuki and M. Miyayama: J. Ceram. Soc. Jpn 116 (2008), p.994.

Google Scholar

[16] K. Yamamoto, M. Suzuki, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. 47 (2008), p.7623.

Google Scholar

[17] M. Suzuki, A. Morishita, Y. Kitanaka, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. 49 (2010), 09MD09.

Google Scholar

[18] A. Morishita, Y. Kitanaka, M. Izumi, Y. Noguchi and M. Miyayama: J. Adv. Dielectr. 01 (2011), p.63.

Google Scholar

[19] H. Onozuka, Y. Kitanaka, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. 50 (2011), 09NE07.

Google Scholar

[20] Y. Kitanaka, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. 49 (2010), 09MC06.

Google Scholar

[21] K. Yanai, Y. Kitanaka, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Kurushima and S. Mori: Physica Status Solidi(a), accepted.

Google Scholar

[22] S. Pöykkö and D. J. Chadi: Phys. Rev. Lett. 83 (1999), p.1231.

Google Scholar

[23] M. V. Raymond and D. M. Smyth: J. Phys. Chem. Solids 57 (1996), p.1507.

Google Scholar

[24] U. Robels and G. Arlt: J. Appl. Phys. 73 (1993), p.3454.

Google Scholar

[25] A. Q. Jiang, G. H. Li and L. D. Zhang: J. Appl. Phys. 83 (1998), p.4878.

Google Scholar

[26] T. Ogawa: J. Eur. Ceram. Soc. 24 (2004), p.1517.

Google Scholar