Fracture Stress of Ultrahigh Strength Ribbons Determined by Microhardness

Article Preview

Abstract:

Ultrahigh strength amorphous alloys Fe65.9Cr11.6Si7.5B15 and Co43Ta5.5Fe20B31.5 prepared by rapid quenching have the form of ribbons with thickness of about 40 micrometers with some imperfections in the sample width and the cross section. Fractographic analysis of Co- and Fe-based high strength soft magnetic materials showed the high localization of the plastic deformation and the ductility in narrow shear bands. To estimate the fracture stress, the Vickers microhardness and the average width of dimples (or the wavelength of the vein features) on the fracture surface were used. Based on the microhardness, the tensile yield strength was calculated as 4 and 5 GPa for Fe-based and Co-based glass, respectively. We estimated the fracture toughness from the measured mean value of the dimple size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-111

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Roth, M. Stoica, J. Degmova, U. Gaitzsch, J. Eckert, L. Schultz, J. Magn. Magn. Mater. 304 (2006) 192.

Google Scholar

[2] Y.F. Li, M. Vazquez, D.X. Chen, J. Phys. D, Appl. Phys. 37 (2004) 389.

Google Scholar

[3] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Acta Mater. 52 (2004) 1631.

Google Scholar

[4] A. Inoue, B.L. Shen, C.T. Chang, Intermetalics 14 (2006) 936.

Google Scholar

[5] E. Tabachnikova, V. Bengus, J. Miskuf, K. Csach, V. Ocelik, W. Johnson, V. Molokanov, Mater. Sci. Forum 343-346 (2000) 197.

Google Scholar

[6] H. Men, S.J. Pang, T. Zhang, Mater. Sci. Eng. A 449-451 (2007) 538.

Google Scholar

[7] J.J. Lewandowski, A.L. Greer, Nature Mater. 5 (2006) 15.

Google Scholar

[8] V.Z. Bengus, E.D. Tabachnikova, J. Miskuf, K. Csach, V. Ocelik, W.L. Johnson, V.V. Molokanov, J. Mater. Sci. 35 (2000) 4449.

DOI: 10.1023/a:1004881612750

Google Scholar

[9] Ch.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067.

Google Scholar

[10] K.K. Benrahou, M. Benguediab, M. Belhouari, M. Nait-Abdelaziz, A. Imad, Computational Material Science 38 (2007) 595.

DOI: 10.1016/j.commatsci.2006.04.001

Google Scholar

[11] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Phys. Rev. Lett. 94 (2005) 125510.

Google Scholar