[1]
T. Szirtes, Applied Dimensional Analysis and Modeling, McGraw-Hill, New York, (1997).
Google Scholar
[2]
J. Menčík et al., Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res. 12 (1997) 2475-2484.
DOI: 10.1557/jmr.1997.0327
Google Scholar
[3]
Y.T. Cheng, C.M. Cheng, Scaling, dimensional analysis, and indentation measurements, Mat. Sci. Eng. R44 (2004) 91-149.
Google Scholar
[4]
K. Peter, Sprödbruch und Mikroplastizität von Glas in Eindruckversuchen, Glastechn. Ber. 37 (1964) 333-345.
Google Scholar
[5]
J. Němeček, Nanoindentation based analysis of heterogeneous structural materials, in: J. Němeček (Ed. ), Nanoindentation in Materials Science, InTech, Rijeka, 2012, pp.89-108.
Google Scholar
[6]
G. Constantinides et al., Grid indentation analysis of composite microstructure and mechanics: Principles and validation, Mater. Sci. Eng. A430 (2006) 189-202.
Google Scholar
[7]
K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, (1985).
Google Scholar
[8]
J. Menčík, Uncertainties and errors in nanoindentation, in: J. Němeček (Ed. ), Nanoindentation in Materials Science, InTech, Rijeka, 2012, pp.53-86.
Google Scholar
[9]
W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46 (1998) 411-425.
DOI: 10.1016/s0022-5096(97)00086-0
Google Scholar
[10]
J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, London, (1992).
Google Scholar
[11]
J. Menčík, Low-load nanoindentation: Influence of surface forces and adhesion. Chem. Listy 106 (2012) 481-484.
Google Scholar
[12]
J. Menčík, Determination of parameters of visco-elastic materials by instrumented indentation. Part 3: Rheological model and other characteristics, Chem. Listy 104 (2010) 275-278.
Google Scholar