Indentation Size Effects in Ductile and Brittle Materials

Article Preview

Abstract:

Indentation hardness of homogeneous materials should be constant. However, at very small depths, the apparent hardness often increases with decreasing imprint size. The paper discusses various cases of this indentation size effect in metals and ceramics and explains the extrinsic and intrinsic reasons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-54

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998) 411-425.

DOI: 10.1016/s0022-5096(97)00086-0

Google Scholar

[2] K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area of depth-sensing indentation experiments, J. Mater. Res. 13 (1998) 1300-1306.

DOI: 10.1557/jmr.1998.0185

Google Scholar

[3] J.G. Swadener, E.P. George, G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes, J. Mech. Phys. Solids 50 (2002) 681-694.

DOI: 10.1016/s0022-5096(01)00103-x

Google Scholar

[4] G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: A critical examination of experimental observations and mechanistic interpretations, Annu. Rev. Mater. Res. 40 (2010) 271-292.

DOI: 10.1146/annurev-matsci-070909-104456

Google Scholar

[5] T.T. Zhu, X.D. Hou, A.J. Bushby, D.J. Dunstan, Indentation size effect at the initiation of plasticity for ceramics and metals, J. Phys. D: Apl. Phys. 41 (2008) 1-6.

DOI: 10.1088/0022-3727/41/7/074004

Google Scholar

[6] I.J. Spary, A.J. Bushby, N.M. Jennett, On the indentation size effect in spherical indentation, Phil. Mag. 86 (33-35) (2006) 5581-5593.

DOI: 10.1080/14786430600854988

Google Scholar

[7] W.W. Gerberich et al., Interpretations of indentation size effects, J. Appl. Mech. 69 (2002) 433-442.

Google Scholar

[8] K. Sangwal, Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids – some basic concepts and trends, Cryst. Res. Technol. 44 (2009) 1019-1037.

DOI: 10.1002/crat.200900385

Google Scholar

[9] T.T. Zhu, A.J. Bushby, D.J. Dunstan, Size effect in the initiation of plasticity for ceramics in nanoindentation, J. Mech. Phys. Solids 56 (2008) 1170-1185.

DOI: 10.1016/j.jmps.2007.10.003

Google Scholar

[10] P.M. Sargent, Indentation size effect and strain hardening, J. Mater. Sci. Letters (1989) 1139-1140.

DOI: 10.1007/bf01730048

Google Scholar

[11] Y. Huang et al., A model of size effects in nanoindentation, J. Mech. Phys. Solids 54 (2006) 1668-1686.

Google Scholar

[12] K. Rashid Al-Rub, Prediction of micro and nanoindentation size effect from conical or pyramidal indentation, Mechanics of Materials 39 (2007) 787-802.

DOI: 10.1016/j.mechmat.2007.02.001

Google Scholar

[13] T.T. Zhu, A.J. Bushby, D.J. Dunstan, Materials mechanical size effects: a review, Materials Technology 23 (2008) 193-209.

DOI: 10.1179/175355508x376843

Google Scholar

[14] S.J. Bull, T.F. Page, E.H. Yoffe, An explanation of the indentation size effect in ceramics, Phil. Mag. Letters 59 (1989) 281-288.

DOI: 10.1080/09500838908206356

Google Scholar