Osteoconductive Bone Substitutes as Treatment of Benign Lytic Lesions

Article Preview

Abstract:

Benign lytic lesions represent a frequent pathology in our clinic. Regarding therapy, we approach these benign tumors through curettage and filling the defects with bone grafting or bone substitutes like hydroxyapatite crystals and tricalcium phosphate.We want to evaluate the efficiency of both bone grafts and bone substitutes regarding bone consolidation, osseointegration and time until absorption for tricalcium phosphate and hydroxyapatite crystals combination. We analyzed 14 patients treated in our clinic through curettage and defect filling during the last three years: 9 patients’ beneficiated from bone grafting and for the other 5 we used a hydroxyapatite and tricalcium phosphate combination from the same supplier. Diagnoses were bone cyst, non-ossifying fibroma and giant-cell tumor. Therapeutic method was linked with bone graft availability. Follow-up was 24 months through periodical x-ray controls in our clinic. Bone consolidation was satisfactory in all cases with no defect collapse. In conclusion, bone substitutes like combinations of hydroxyapatite crystals and tricalcium phosphate are a useful and safe method for surgical treatment of strictly benign lytic tumors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

422-426

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Delloye C, Cnochaert C, Corbu N., Bone substitutes in 2003, an overview. ActaOrthopBelgica 69: 1–8, (2003).

Google Scholar

[2] Gouin F, Cappeli M., Aplications cliniques des céramiques phospho-calciques: Biomateriaux de substitution de l'oset du cartilage-. Cahiers d'einseignement de la SOFCOT. Expansion ScientifiqueFrancaise, (1996).

Google Scholar

[3] Delecrin J, Takahasi S, Gouin F, Camps C, Passuti N., A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis. Spine 25: 563–569, (2000).

DOI: 10.1097/00007632-200003010-00006

Google Scholar

[4] Augereau B., Kysteanevrysmal. Tumeur set dystrophies benignes. In: Tomeno B, Forest M (eds) Les tumeur sosseuses de l'appareil locomoteur. Laboratoires UNICET, Paris, (1993).

Google Scholar

[5] CERAFORM®: Technical description in Les substitutes osseux en 2005, surl'egide GESTO, p.44, (2005).

Google Scholar

[6] Schwartz C, Lecestre P, Fraysinet P, Liss P., Bone Substitutes, Eur.J. OrthopSurgTraum. 9(3): 161–165 , (1999).

DOI: 10.1007/bf00542583

Google Scholar

[7] Botez P., Sirbu P., Simion L., Munteanu F., Antoniac I., Aplication of a biphasic macroporous synthetic bone substitutes CERAFORM®: clinical and histological results", Eur.J. OrthopSurgTrauma., 19 : 387-395, (2009).

DOI: 10.1007/s00590-009-0445-7

Google Scholar

[8] Botez P, Petcu I., Analyse des applications chez l'homme d'un substitute osseux a base de céramique biphasique (CERAFORM). Étude prospective préliminaire, 8e Congres de l'AOLF, Bucharest, (2002).

Google Scholar

[9] Daculsi G, Passuti N., Effect of the macro porosity for osseous substitution of calcium phosphate ceramics, Biomater 11: 86–88, (1990).

Google Scholar

[10] Frayssinet P, Trouillet JL, Rouquet N, Autefage A, Delga C et al., Calcium phosphate porous ceramics osseointegration: the importance of a good definition of material specifications. Rev ChirOrthop 79, (1993).

DOI: 10.1016/0142-9612(93)90144-q

Google Scholar

[11] Yuan H, Kurashina K, De Brujin JD, Li Y, De Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20: 1799–1806.

DOI: 10.1016/s0142-9612(99)00075-7

Google Scholar

[12] Van Blitterswijk CA, Grote LL, Kuijpers W, DaemsWTh, De Grout K., Macrospore tissue ingrowths: a quantitative and qualitative study on hydroxyapatite ceramics. Biomateriaux 7: 137–143 , (1986).

DOI: 10.1016/0142-9612(86)90071-2

Google Scholar

[13] Gourin F, Delécrin F, Passuti N, Touchait N, Poirier P, Bain JV, Comblement osseux par céramique phosphocalcique biphasée macroporeuse. A propos 23 cas., Revue Chir. Orthop. 81: 59–65, (1995).

Google Scholar

[14] Malard O, Bouler JM, Guicheux J, Heymann D, Pillet P, Coquard C, Daculsi G., Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorbtion and inflamatory reactions. J Biomed Mater Res 46(1): 103–111, (1999).

DOI: 10.1002/(sici)1097-4636(199907)46:1<103::aid-jbm12>3.0.co;2-z

Google Scholar

[15] Gautier O, Bouler JM, Aguado E, Legeros RZ, Pilet P, Daculsi G., Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic ceramics. J Mater Sci Mater Med 10(4): 199–204, (1999).

DOI: 10.1023/a:1008949910440

Google Scholar

[16] Daculsi G, Passuti N, Martin S, Le Nihouanen IC, Brulliard V, Delécrin I, A comparative study of bioactive calcium phosphate ceramics after implantation in cancellous bone in the dog. Rev ChirOrthop 75: 65–71, (1989).

Google Scholar

[17] Saito M, Shimizu H, Beppu M, Takagi M., The role of ß-tricalcium phosphate in vascularized periosteum. J OrthopSci 5: 275–282, (2000).

DOI: 10.1007/s007760050163

Google Scholar

[18] Laurie SWS, Kaban LB, Mulliken LB, Murray IE, Donor-site morbidity after harvesting rib and iliac bone. PlastReconstrSurg 73: 933–938, (1984).

DOI: 10.1097/00006534-198406000-00014

Google Scholar

[19] Summers BN, Eisenstein SM, Donor site pain from the ilium: A complication of lumbar spine fusion. J Bone Joint Surg 71-B: 677–679, (1989).

DOI: 10.1302/0301-620x.71b4.2768321

Google Scholar

[20] Nery EB, LeGeros RZ, Lynch ZL, Lee K., Tissue response to biphasic calcium phosphate ceramic with different ratios of HAIBTCP in periodontal osseous defects. J Periodont 63: 729–735, (1992).

DOI: 10.1902/jop.1992.63.9.729

Google Scholar

[21] Khan Y, Yaszemski MJ, Antonios GM, Laurencin C, Tissue engineering of bone: material and matrix considerations. J Bone J Surg Am 90: 36–42, (2008).

DOI: 10.2106/jbjs.g.01260

Google Scholar

[22] D. Allison, A. Lindberg, B. Samimi, R. Mirzayan, L. Merendez, A Comparison of mineral bone graft substitutes for bone defects", US Oncology & Hematology.

Google Scholar

[23] Gianouddis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36 (Suppl 3): S20–S27.

DOI: 10.1016/j.injury.2005.07.029

Google Scholar

[24] G. El-Adl, M. Mostafa, A. Enan, M. Ashraf, Biphasic ceramic bone substitute mixed with autogenous bone marrow in the treatment of cavitary benign bone lesions", ActaOrthop. Belg., 2009, 75, 110-118.

Google Scholar