Fabrication of Titanium Carbonitride Based Cermets by Microwave and Spark Plasma Sintering

Article Preview

Abstract:

Titanium Carbonitride (TiCN) based cermets are important cutting tools materials. Fabrication of the material is time and cost consuming process for the traditional sintering. In this paper, TiCN based cermets were prepared by using microwave sintering and spark plasma sintering compare to traditional sintering, and the microstructures and properties were investigated. The results show that microwave sintering and the spark plasma sintering can obtain similar properties with traditional sintering with shorter sintering time, this will greatly save energy. The strength and hardness of TiCN based cermets sintered by microwave sintering is 1136Mpa and HRA87, respectively. Microwave wave sintering can obtain finer grain than traditional sintering, and spark plasma sintering have the finest grain, which is in the range of 0.3μm~0.5μm. Due to the present of big pores, the bulk of spark plasma sintering has the lowest bending strength.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 589-590)

Pages:

567-571

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer: Inter J Refra Met Hard Mater. vol. 13 (1995) , p.343.

Google Scholar

[2] D. Mari, S. Bolognini, T. Viatte, W. Benoit: Inter J Refra Met Hard Mater. vol. 17 (2001), p.209.

Google Scholar

[3] A. Bellosi, R. Calzavarini, M. G. Faga, F. Monteverde, C. ZancolR, G. E. D. Errico, J Mater Process Tech, vol. 250(2003), p.349.

Google Scholar

[4] H. Zhang, J. Yi, S. Gu: Inter J Refra Met Hard Mater. vol. 29(2011), p.158.

Google Scholar

[5] H. Zhang, S. Tang, J. Yan, X. Hu: Inter J Refra Met Hard Mater. vol. 53(2007), p.236.

Google Scholar

[6] S. Tang, H. Zhang, J. Yan: Adv Mater Res. (2011), p.579.

Google Scholar

[7] N. Liu, S. Chao, H. Yang: Inter J Refra Met Hard Mater. vol. 24(2006), p.445.

Google Scholar

[8] Y. Zheng, S. Wang, Y. Yan, N. Zhao, X. Chen: Inter J Refra Met Hard Mater. vol. 26(2008), p.306.

Google Scholar

[9] J. Jung, S. Kang: Acta Mater, vol. 31 (2004), p.851.

Google Scholar

[10] X. Zhang, N. Liu, C. Rong: Mater Charact. vol. 59(2008), p.1690.

Google Scholar

[11] L. Chen, W. Lengauer, K. Dreyer: Inter J Refra Met Hard Mater. vol. 13(2000), p.343.

Google Scholar

[12] X. Li, G. Qiu, T. Qiu, H. Zhao, H. Bai, X. Sun: J Rare Earth. vol. 25(2007), Sup, p.1, 37.

Google Scholar

[13] J. M. SAnchez, M. Alvarez, N. Rodriguez, M. Aristizabal: Mater Sci Eng , vol. 392(2009), p.335.

Google Scholar

[14] R. Rustum, A. Dinesh, C. Jiping: Nature. vol. 377 (1999), p.668.

Google Scholar

[15] M. Omori: Mater Sci Eng A. vol. 287(2000), p.183.

Google Scholar

[16] H. Kim, H. Park, I. Jeong, I. Ko, I. Shon: Ceram Int 2008, 34, 1419.

Google Scholar

[17] Y. Zheng, W. Xiong, W. Liu, W. Lei, Q. Yuan: Cera Inter. vol. 31(2005), p.165.

Google Scholar

[18] I Zalite, L. G. Yu, K. A. Khor: Annual Conference on Functional Materials and Nanotechnologies (2011), 1.

Google Scholar

[19] H. Zhang, J. Yan, X. Zhang, S. Tang: Inter J Refra Met Hard Mater. vol. 25 (2006), p.440.

Google Scholar

[20] I. Shon, K. Na, H. Park, S. W. Cho, J. Lim, W. Kim: Journal of Ceramic Processing Research. Vol 13 (2012), p.441.

Google Scholar