Advancement in Ferrite-Based Alloy Coatings by Laser Cladding

Article Preview

Abstract:

Fe-based alloy is widely used for its good wear resistance and high performance-to-price ratio compared with other alloys. Laser cladding is a kind of valid method of metal surface modification, which has been successfully employed to modify the microstructure and/or composition of the near surface region to improve the wear, corrosion and oxidation resistance of a ferrite-based alloy component. In this paper, the recent research status in laser clad ferrite-based alloys is reviewed. The rules of designing laser cladding materials are introduced. The main problems and the solutions of the laser cladding materials application are analysized. The development tendency of laser cladding is forecast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-257

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. M. Zhao, K.L. Wang, Effect of La2O3 on corrosion resistance of laser clad ferrite-based alloy coatings, Corros. Sci. 48 (2006) 273-284.

DOI: 10.1016/j.corsci.2005.01.002

Google Scholar

[2] J.D. Majumdar, B.R. Chandra, A.K. Nath, I. Manna, Studies on compositionally graded silicon carbide dispersed composite surface on mild steel developed by laser surface cladding, J. Mater. Process. Tech. 203(1-3) (2008) 505-512.

DOI: 10.1016/j.jmatprotec.2007.10.056

Google Scholar

[3] M. Green, M. Sharp, Exploiting laser technology in 21st century UK manufacturing: Linking laser materials processing applications to the driving forces for 21st Century manufacturing in the UK, The Association of Laser Users (AILU), Abingdon, (2010).

Google Scholar

[4] A.J. Pinkerton, L. Li, Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties, Thin Solid Films. 453-454 (2004) 471-476.

DOI: 10.1016/j.tsf.2003.11.140

Google Scholar

[5] M.X. Li, Y.Z. He, G.X. Sun, Laser cladding Co-based alloy/SiCp composite coatings on IF steel, Mater. Design. 25(4) (2004) 355-358.

DOI: 10.1016/j.matdes.2003.08.006

Google Scholar

[6] A. Hirose, K.F. Kobayashi, Formation of hybrid clad layers by laser processing, ISIJ Int. 35(6) (1995) 757-763.

DOI: 10.2355/isijinternational.35.757

Google Scholar

[7] S.J. Bull, A.M. Jones, A.R. McCabe, Residual stress in ion-assisted coatings, Surf. Coat. Tech. 54-55 (1992) 173-179.

DOI: 10.1016/s0257-8972(09)90046-9

Google Scholar

[8] W.L. Song, J. Echigoya, B.D. Zhu, et al., Vacuum laser cladding and effect of Hf on the cracking susceptibility and the microstructure of Fe–Cr–Ni laser-clad layer, Surf. Coat. Tech. 126 (2000) 76-80.

DOI: 10.1016/s0257-8972(00)00532-6

Google Scholar

[9] X.L. Wu, Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating, Surf. Coat. Tech. 115(2-3) (1999) 153-162.

DOI: 10.1016/s0257-8972(99)00168-1

Google Scholar

[10] X.L. Wu, G.N. Chen, Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating, Mat. Sci. Eng. A 270 (1999) 183-189.

DOI: 10.1016/s0921-5093(99)00159-8

Google Scholar

[11] J. Singh, J. Mazumder, Microstrcture and wear properties of laser clad Fe-Mn-C alloys, Metall. Trans. A 18 (1987) 313-322.

DOI: 10.1007/bf02825712

Google Scholar

[12] K. Nagarathnam, K. Komvopoulos, Microstructural and Micro-hardness Characteristics of Laser- Synthesized Fe-Cr-W-C Coatings, Metall. Mater. Trans. A 26(8) (1995) 2131-2139.

DOI: 10.1007/bf02670684

Google Scholar

[13] Q.M. Zhang, J.J. He, W.J. Liu, M.L. Zhong, Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding, Surf. Coat. Tech. 162(2-3) (2003) 140-146.

DOI: 10.1016/s0257-8972(02)00697-7

Google Scholar

[14] W. Tan, W.J. Liu, J.H. Jia, Research on laser cladding Fe-C-Si-B, Heat Treat. Met. 25(1) (2000) 15-17.

Google Scholar

[15] S. Li, Q.W. Hu, X.Y. Zeng, S.Q. Ji, Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer, Appl. Surf. Sci. 240 (2005) 63-70.

DOI: 10.1016/j.apsusc.2004.06.098

Google Scholar

[16] S Wulin, Z Beidi, X Changsheng, H Wei, C Kun, Cracking susceptibility of a laser-clad layer as related to the melting properties of the cladding alloy, Surf. Coat. Tech. 115(2-3) (1999) 270-272.

DOI: 10.1016/s0257-8972(99)00249-2

Google Scholar

[17] W.L. Song, J. Echigoya, B.D. Zhu, C.H. Xie, K. Cui, Effects of Co on the cracking susceptibility and the microstructure of Fe–Cr–Ni laser-clad layer, Surf. Coat. Tech. 138(2-3) (2001) 291-295.

DOI: 10.1016/s0257-8972(00)01168-3

Google Scholar

[18] W.L. Song, B.D. Zhu, K. Cui, Effect of Ni content on cracking susceptibility and microstructure of laser-clad Fe-Cr-Ni-B-Si alloy, Surf. Coat. Tech. 80(3) (1996) 279-282.

DOI: 10.1016/0257-8972(95)02470-0

Google Scholar

[19] G.M. Zhao, K.L. Wang Effect of La2O3 on resistance to high-temperature oxidation of laser clad ferrite-based alloy coatings, Surf. Coat. Tech. 190 (2005) 249-254.

DOI: 10.1016/j.surfcoat.2004.08.203

Google Scholar

[20] I. Manna, J. D. Majumdar, B.R. Chandra, et al., Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel, Surf. Coat. Tech. 201 (2006) 434-440.

DOI: 10.1016/j.surfcoat.2005.11.138

Google Scholar

[21] X.L. Wu, Y.S. Hong, Fe-based thick amorphous-alloy coating by laser cladding, Surf. Coat. Tech. 141 (2001) 141-144.

DOI: 10.1016/s0257-8972(01)01263-4

Google Scholar