Synthesis and Photochromic Properties of MOO3 Nanosheets Crystallites

Article Preview

Abstract:

Layered Molybdenum trioxide MOO3, with a two-dimensional (2D) structure was successfully delaminated into colloidal nanosheets in n-butanol via a soft-chemical process involving intercalation of dodecylamine. X-ray diffration (XRD) showd that: after intercalation spacing of the layered material expend to 2.69nm from 1.38nm, and Characterizations by transmission electron microscopy (TEM) and scan electron microscopy (TEM) confirmed the formation of unilamellar 2D nanosheet crystallites with an average lateral size of 400 nm. The obtained nanosheets exhibited photochromic properties upon UV-VIS excitation. The chromogenic nanosheet obtained in this study features the intense UV absorption and optically switchable Visible-to-IR absorption, which may be useful for window applications such as heat-absorbing films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-288

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Chernova, M. Roppolo, A. C. Dillon and M. S. Whittingham, J. Mater. Chem. 19 (2009) 2526-2552.

Google Scholar

[2] L. Zheng, Y. Xu, D. Jin and Y. Xie, Chem. Mater, 21 (2009) 5681-5690.

Google Scholar

[3] A. W isitsoraat, D. Phokharatkul, A. Tuantranont and C. Saikaew, IEEE Sensors , 13 (2009) 312.

Google Scholar

[4] E. Comini, L. Yubao, Y. Brando and G. Sberveglieri, Chem. Phys. Lett., 407 (2005) 368-371.

Google Scholar

[5] W . S. Kim, H. C. Kim and S. H. Hong,J. Nanopart. Res., 12 (2010) 1889-1896.

Google Scholar

[6] M . B. Rahmani, S. H. Keshmiri, J. Yu, A. Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. X. Li, W. Wlodarski and K. Kalantar-zadeh, Sens. Actuators, B , 145 (2010) 13-19.

DOI: 10.1016/j.snb.2009.11.007

Google Scholar

[7] Z. X. Song, N. Mimura, J. J. Bravo-Suarez, T. Akita, S. Tsubota and S. T. Oyama, Appl. Catal., A, 316 (2007) 142-151.

Google Scholar

[8] F. W ang and W. Ueda, Chem. Commun., (2008) 3196-3198.

Google Scholar

[9] L. Cheng, M. W. Shao, X. H. Wang and H. B. Hu, Chem. Eur. J, 15 (2009) 2310.

Google Scholar

[10] F. Wang and W. Ueda, Chem. Eur. J, 15 (2009) 742.

Google Scholar

[11] S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. B. Zhang and A. C. Dillon, Adv. Mater, 20 (2008) 3627-3632.

DOI: 10.1002/adma.200800999

Google Scholar

[12] L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai and Z. L. Wang, Adv. Mater, 19 (2007) 3712–3716.

Google Scholar

[13] C. V. S. Reddy, Z. R. Deng, Q. Y. Zhu, Y. Dai, J. Zhou, W. Chen and S. I. Mho, Appl. Phys. A: Mater. Sci. Process, 89 (2007) 995.

Google Scholar

[14] S.M. Paek, J.H. Kang, H. Jung, S. J. Hwang and J. H. Choy, Chem. Commun., (2009) 7536.

Google Scholar

[15] M. F. Hassan, Z. P. Guo, Z. Chen and H. K. Liu, J. Power Sources, 195 (2010) 2372-2376.

Google Scholar

[16] V. M. Mohan, H. Bin and W. Chen, J. Solid State Electrochem, 14 (2010) 1769-1775.

Google Scholar

[17] T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat. Mater, 9 (2010) 146-151.

Google Scholar

[18] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She and Z. L. Wang, Adv. Mater , 15 (2003) 1835.

Google Scholar

[19] A. Khademi, R. Azimirad, A. A. Zavarian and A. Z. Moshfegh, J. Phys. Chem. C, 113 (2009) 19298-19304.

DOI: 10.1021/jp9056237

Google Scholar

[20] J. W. Rabalais, R. J. Colton and A. M. Guaman, Chem. Phys. Lett. 29 (1974) 131.

Google Scholar

[21] S. R. Dhage, M. S. Hassan and O. B. Yang, Mater. Chem. Phys, 114 (2009) 511.

Google Scholar

[22] L. Fang, Y. Y. Shu, A. Q. Wang and T. Zhang, J. Cryst. Growth, 310 (2008) 4593-4600.

Google Scholar

[23] G. C. Li, L. Jiang, S. P. Pang, H. R. Peng and Z. K. Zhang, J. Phys. Chem. B, 110 (2006) 24472-24475.

Google Scholar

[24] C. Diaz, V. Lavayen and C. O'Dwyer, J. Solid. State. Chem, 183 (2010) 1595-1603.

Google Scholar

[25] B. Hu, L. Q. Mai, W. Chen and F. Yang, ACS Nano , 3 (2009) 478-482.

Google Scholar

[26] X. K. Hu, Y. T. Qian, Z. T. Song, J. R. Huang, R. Cao and J. Q. Xiao, Chem. Mater, 20 (2008) 1527-1533.

Google Scholar

[27] G. Wang, Y. Ji, L. H. Zhang, Y. M. Zhu, P. I. Gouma and M. Dudley, Chem. Mater, 19 (2007) 979-981.

Google Scholar

[28] K. Kalantar-zadeh, J. S. Tang, M. S. Wang, K. L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski andR. B. Kaner, Nanoscale, 2010, 2, 429-433.

DOI: 10.1039/b9nr00320g

Google Scholar