Fibre-Matrix Interface Development during High Temperature Exposition of Long Fibre Reinforced SiOC Matrix

Article Preview

Abstract:

The fracture behaviour of long fibre reinforced composites is predetermined mainly by properties of fibre-matrix interface. The matrix prepared by pyrolysis of polysiloxane resin possesses ability to resist high temperatures without significant damage under oxidising atmosphere. The application is therefore limited by fibres and possible changes in the fibre matrix interface. The study of development of interface during high temperature exposition is the main aim of this contribution. Application of various techniques as FIB, GIS, TEM, XRD allowed to monitor microstructural changes in the interface of selected places without additional damage caused by preparation. Additionally, it was possible to obtain information about damage, the crack formation, caused by the heat treatment from the fracture mechanics point of view.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

401-404

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Chawla, K.K. Chawla, M. Koopman, B. Patel, C. Coffin, J.I. Eldridge: Composites Science and Technology Vol. 61 (2001), p. (1923).

DOI: 10.1016/s0266-3538(01)00096-3

Google Scholar

[2] C. Kaya, F. Kaya, A.R. Boccaccini, K.K. Chawla: Acta Materialia Vol. 49 (2001) p.1189.

Google Scholar

[3] H. Kaya: Composites Science and Technology Vol. 59 (1999) p.861.

Google Scholar

[4] I. Dlouhy, Z. Chlup, D.N. Boccaccini, S. Atiq, A.R. Boccaccini: Composites Part A: Applied Science and Manufacturing Vol. 34 (2003), p.1177.

DOI: 10.1016/j.compositesa.2003.08.004

Google Scholar

[5] P. Hvizdoš, V. Puchý, A. Duszová, J. Dusza, C. Balázsi: Ceramics International Vol. 38 (2012), p.5669.

DOI: 10.1016/j.ceramint.2012.04.010

Google Scholar

[6] A. Chlupova, P. Dymacek: Kovove Materialy-Metallic Materials Vol. 40 (2002) p.195.

Google Scholar

[7] K.K. Chawla: Jom Vol 47 (1995), p.19.

Google Scholar

[8] M. Cerny, P. Glogar, Z. Sucharda, Z. Chlup, J. Kotek: Composites Part a-Applied Science and Manufacturing Vol. 40 (2009), p.1650.

DOI: 10.1016/j.compositesa.2009.08.002

Google Scholar

[9] Z. Chlup, M. Cerny, A. Strachota, I. Dlouhy: Materials Structure & Micromechanics of Fracture Vol. 465 (2011), p.455.

Google Scholar

[10] A.R. Boccaccini, A.M. Torre, C.R. Oldani, D.N. Boccaccini: Materials Characterization Vol. 54 (2005), p.75.

Google Scholar

[11] M.B. Ruggles-Wrenn, M. Ozer: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing Vol. 527 (2010), p.5326.

Google Scholar

[12] J. Perez-Rigueiro, J. Celemin, J. Llorca, P. Herrero: Journal of the American Ceramic Society Vol. 82 (1999), p.3494.

Google Scholar

[13] M. Cerny, A. Strachota, Z. Chlup, Z. Sucharda, M. Zaloudkova, P. Glogar, I. Kubena: Journal of Composite Materials Vol. 47 (2013), p.1055.

Google Scholar