Trajectory and Crystallography of Crack Growth in Austenitic Steel after LCF Tests

Article Preview

Abstract:

Analysis of microcrack and mesocrack formation in austenitic steel thin filmsprepared after low-cycle fatigue (LCF) testsfrom bulk samples is presented using TEM techniques. Location, orientation and interaction of microcracks with microstructure components of the steel were determined. Plastic zone ahead of mesocrack tip and the structure changes in it were analyzed. Crystallography of slip bands and deformation twins and their relation with the microcrack propagation direction were also determined. The impact of grain anisotropy and inhomogeneous distribution of stress relaxation ahead of mesocrack tip in plastic zone were considered. Influence of sizes of mesocracks [ and microcracks and their relation with the trajectory and crystallography of propagation are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

793-796

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Lidbury, 1st Biennial conference on through Life Toughness Prediction in reactor Steels, 6-8/02/06, Heviz, Hungary. "Multi-scale modeling in the RPV Mechanics sub-project will link the flow and fracture behavior or irradiated RPV materials at the micro- and macro level.

Google Scholar

[2] Ж. Фридель. Дислокации, пер. с англ. под ред. А.Л. Ройтбурда, Изд. Мир. М. (1967).

Google Scholar

[3] Р. Хоникомб, Пластическая деформация металлов, пер. с англ. под ред. Б.Я. Любова, Изд. Мир. М. (1972).

Google Scholar

[4] P. Hornak, I. Zrnek, V. Vrochovski, Aspects of thermal fatigue deformation process of wrought Ni-based super Alou pp.179-184. LCFIC, 7-11/09, 98, Garmisch-PartenKirchen, Germany. Ed. K.T. Rie and P.D. Portella 1998, Elsevier Science.

Google Scholar

[5] Osamu Umesawa and KotobuNagal, Effects of test temperature on internal fatigue crack generation… in austenitic steels, pp.3017-3028. Metall. Transactions A., v. 29A, N12, (1998).

DOI: 10.1007/s11661-998-0209-8

Google Scholar

[6] Z.F. Zhang and Z.G. Wang, Relationship between the fatigue cracking probability and the grain-boundary category, V. 80, pages 483-488, (2010).

DOI: 10.1080/09500830050057189

Google Scholar

[7] D.L. McDowell and F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue cracks formation, International Journal of fatigue, 2010, v: 32, Pages: 1521-1542.

DOI: 10.1016/j.ijfatigue.2010.01.003

Google Scholar

[8] T. Eterashvili, M. Vardosanidze, Metallographic and SEM research of LCF deformation in austenitic steels, 5 IC on Low Cycle Fatigue, Berlin, Germany September 9-11, 2003 (P 72).

DOI: 10.4028/www.scientific.net/kem.665.141

Google Scholar

[9] T. Markus Welsch, Shaker Verlag GmbH – Dissertation, Saarland University, 2011, Bildung von MikrorissenanKorngrenzen: Einfluss der Orientierung auf lokale Oberflächenspannungen und auf die Ermüdungsrissbildung.

Google Scholar

[10] S. Heino and B. Karlsson, Cyclic deformation and fatigue behavior of 7Mo-0, 5N super austenitic stainless steel-slip characteristics and development of dislocation structures, pp.353-363. ActaMaterialia, v. 49 (2), (2001).

DOI: 10.1016/s1359-6454(00)00200-7

Google Scholar

[11] James Rice R., Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids, V. 40, N2, 1992, Ñ. 239-271.

DOI: 10.1016/s0022-5096(05)80012-2

Google Scholar

[12] Agar Uguz and John Martin , Plastic Zone Size Measurement Techniques for Metallic Materials, Materials Characterization N 37, 1996, pp.105-118.

DOI: 10.1016/s1044-5803(96)00074-5

Google Scholar

[13] S.G. Roberts, Modeling crack tip plastic zones and brittle- ductile transitions, Mat. Sci. and Engineering, A 234-236 (1997), pp.52-58.

DOI: 10.1016/s0921-5093(97)00180-9

Google Scholar